Fair Infinitesimal Jackknife: Mitigating the Influence of Biased
Training Data Points Without Refitting
- URL: http://arxiv.org/abs/2212.06803v1
- Date: Tue, 13 Dec 2022 18:36:19 GMT
- Title: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased
Training Data Points Without Refitting
- Authors: Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, Kush R.
Varshney
- Abstract summary: We propose an algorithm that improves the fairness of a pre-trained classifier by simply dropping carefully selected training data points.
We find that such an intervention does not substantially reduce the predictive performance of the model but drastically improves the fairness metric.
- Score: 41.96570350954332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In consequential decision-making applications, mitigating unwanted biases in
machine learning models that yield systematic disadvantage to members of groups
delineated by sensitive attributes such as race and gender is one key
intervention to strive for equity. Focusing on demographic parity and equality
of opportunity, in this paper we propose an algorithm that improves the
fairness of a pre-trained classifier by simply dropping carefully selected
training data points. We select instances based on their influence on the
fairness metric of interest, computed using an infinitesimal jackknife-based
approach. The dropping of training points is done in principle, but in practice
does not require the model to be refit. Crucially, we find that such an
intervention does not substantially reduce the predictive performance of the
model but drastically improves the fairness metric. Through careful
experiments, we evaluate the effectiveness of the proposed approach on diverse
tasks and find that it consistently improves upon existing alternatives.
Related papers
- Alpha and Prejudice: Improving $α$-sized Worst-case Fairness via Intrinsic Reweighting [34.954141077528334]
Worst-case fairness with off-the-shelf demographics group achieves parity by maximizing the model utility of the worst-off group.
Recent advances have reframed this learning problem by introducing the lower bound of minimal partition ratio.
arXiv Detail & Related papers (2024-11-05T13:04:05Z) - DRoP: Distributionally Robust Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
In the application of machine learning to real-life decision-making systems, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness.
The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss.
In this paper, we introduce a new approach to handle fairness by formulating a multi-objective optimization problem.
arXiv Detail & Related papers (2020-08-03T18:51:24Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
We propose a robust logistic regression model with an unfairness penalty that prevents discrimination with respect to sensitive attributes such as gender or ethnicity.
This model is equivalent to a tractable convex optimization problem if a Wasserstein ball centered at the empirical distribution on the training data is used to model distributional uncertainty.
We demonstrate that the resulting classifier improves fairness at a marginal loss of predictive accuracy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-07-18T22:34:48Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
This paper introduces the notion of threshold invariant fairness, which enforces equitable performances across different groups independent of the decision threshold.
Experimental results demonstrate that the proposed methodology is effective to alleviate the threshold sensitivity in machine learning models designed to achieve fairness.
arXiv Detail & Related papers (2020-06-18T16:49:46Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.