Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with
Neural Flow Wavefunctions
- URL: http://arxiv.org/abs/2212.06835v1
- Date: Wed, 14 Dec 2022 18:59:07 GMT
- Title: Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with
Neural Flow Wavefunctions
- Authors: Zhuo Chen, Di Luo, Kaiwen Hu, Bryan K. Clark
- Abstract summary: We present a neural flow wavefunction, Gauge-Fermion FlowNet, to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions.
We investigate confinement and string breaking phenomena in different fermion density and hopping regimes.
- Score: 5.049046327655608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to
simulate 2+1D lattice compact quantum electrodynamics with finite density
dynamical fermions. The gauge field is represented by a neural network which
parameterizes a discretized flow-based transformation of the amplitude while
the fermionic sign structure is represented by a neural net backflow. This
approach directly represents the $U(1)$ degree of freedom without any
truncation, obeys Guass's law by construction, samples autoregressively
avoiding any equilibration time, and variationally simulates Gauge-Fermion
systems with sign problems accurately. In this model, we investigate
confinement and string breaking phenomena in different fermion density and
hopping regimes. We study the phase transition from the charge crystal phase to
the vacuum phase at zero density, and observe the phase seperation and the net
charge penetration blocking effect under magnetic interaction at finite
density. In addition, we investigate a magnetic phase transition due to the
competition effect between the kinetic energy of fermions and the magnetic
energy of the gauge field. With our method, we further note potential
differences on the order of the phase transitions between a continuous $U(1)$
system and one with finite truncation. Our state-of-the-art neural network
approach opens up new possibilities to study different gauge theories coupled
to dynamical matter in higher dimensions.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations [0.0]
We introduce a framework for embedding lattice symmetries in Neural Slater-Backflow-Jastrow wavefunction ansatzes.
We demonstrate how our model allows us to target the ground state and low-lying excited states.
arXiv Detail & Related papers (2024-06-13T13:01:50Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Theory of the Loschmidt echo and dynamical quantum phase transitions in
disordered Fermi systems [0.0]
We develop the theory of the Loschmidt echo and dynamical phase transitions in non-interacting strongly disordered Fermi systems after a quench.
In finite systems the Loschmidt echo displays zeros in the complex time plane that depend on the random potential realization.
We show that this dynamical phase transition can be understood as a transition in the distribution function of the smallest eigenvalue of the Loschmidt matrix.
arXiv Detail & Related papers (2022-09-22T10:04:45Z) - Signatures of Dissipation Driven Quantum Phase Transition in Rabi Model [0.0]
We investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model.
We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength.
arXiv Detail & Related papers (2022-05-23T18:13:10Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.