論文の概要: Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems
- arxiv url: http://arxiv.org/abs/2212.06874v1
- Date: Tue, 13 Dec 2022 19:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 17:45:19.320847
- Title: Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems
- Title(参考訳): 未知不動確率系のフィードバック動作計画のための統計的安全性とロバスト性保証
- Authors: Craig Knuth, Glen Chou, Jamie Reese, Joe Moore
- Abstract要約: 本研究では, 平均力学モデルを用いたサンプリングベースプランナを提案し, 学習外乱境界による閉ループ追従誤差を同時に有界化する。
この保証は,10次元四角形ロボットのシミュレーションや,クレージーフライ四角形ロボットとクリアパスジャカルロボットの現実世界でのシミュレーションにおいて,経験的安全性に変換されることを検証した。
- 参考スコア(独自算出の注目度): 1.0323063834827415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for providing statistical guarantees on runtime safety
and goal reachability for integrated planning and control of a class of systems
with unknown nonlinear stochastic underactuated dynamics. Specifically, given a
dynamics dataset, our method jointly learns a mean dynamics model, a
spatially-varying disturbance bound that captures the effect of noise and model
mismatch, and a feedback controller based on contraction theory that stabilizes
the learned dynamics. We propose a sampling-based planner that uses the mean
dynamics model and simultaneously bounds the closed-loop tracking error via a
learned disturbance bound. We employ techniques from Extreme Value Theory (EVT)
to estimate, to a specified level of confidence, several constants which
characterize the learned components and govern the size of the tracking error
bound. This ensures plans are guaranteed to be safely tracked at runtime. We
validate that our guarantees translate to empirical safety in simulation on a
10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and
Clearpath Jackal robot, whereas baselines that ignore the model error and
stochasticity are unsafe.
- Abstract(参考訳): 本稿では,未知の非線形確率的不活性化力学を持つシステム群の統合計画と制御のための,実行時の安全性と目標到達性に関する統計的保証を提供する。
具体的には、ダイナミクスデータセットを与えられた場合、平均ダイナミクスモデル、ノイズやモデルミスマッチの影響を捉えた空間変動外乱境界、学習したダイナミクスを安定化する収縮理論に基づくフィードバックコントローラを共同で学習する。
本研究では, 平均力学モデルを用いたサンプリングベースプランナを提案し, 学習外乱境界による閉ループ追従誤差を同時に有界化する。
我々は、極値理論(EVT)の手法を用いて、特定の信頼レベル、学習したコンポーネントを特徴付け、トラッキングエラー境界のサイズを管理するいくつかの定数を推定する。
これにより、計画は実行時に安全に追跡されることが保証される。
この保証は,10Dクオードロータのシミュレーションや,クレージーフリークオードロータとクリアパスジャカルロボットの現実世界でのシミュレーションにおいて,モデル誤差や確率性を無視するベースラインが安全でないことを示す。
関連論文リスト
- Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
本稿では,動的に重要な不確かさを補う学習に基づく頑健な予測制御アルゴリズムを提案する。
我々は、一定の等価な「推定とキャンセル」制御法に着想を得た、非線形フィードバックポリシーのクラスを最適化する。
論文 参考訳(メタデータ) (2022-12-02T18:54:23Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
制御バリア関数は、地平系力学にアクセスできれば安全を保証できる便利なツールである。
実際には、システムダイナミクスに関する不正確な知識があるため、安全でない振る舞いにつながる可能性があります。
本手法の有効性をSegwayとQuadrotorのシミュレーション実験により示す。
論文 参考訳(メタデータ) (2021-12-22T20:18:18Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
本稿では,制約指標と外乱推定に基づく軌道中心学習制御へのアプローチを提案する。
提案するフレームワークは、平面四重項の例で検証される。
論文 参考訳(メタデータ) (2021-12-15T15:57:33Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Model Error Propagation via Learned Contraction Metrics for Safe
Feedback Motion Planning of Unknown Systems [4.702729080310267]
本稿では,局所的に安定化可能な動的システムの収縮に基づくフィードバック動作計画法を提案する。
動的データセットが与えられたとき、本手法はダイナミクスの深い制御親和近似を学習する。
4dカー,6dクワッドローター,22d変形可能なオブジェクト操作タスクにおいて,高次元不動システムの学習モデルを用いて,提案手法を安全に提示する。
論文 参考訳(メタデータ) (2021-04-18T03:34:00Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
離散時間系のダイナミクスにおける大きな不確実性を扱うことができる学習ベースの堅牢な予測制御アルゴリズムを提案する。
既存の学習に基づく予測制御アルゴリズムが大規模な不確実性が存在する場合の安全性を確保することができず、性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-16T17:47:02Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。