Extended transfer matrix method for electron transmission in anisotropic
2D materials: Interplay of strain and (a)periodicity of potentials
- URL: http://arxiv.org/abs/2212.06936v1
- Date: Tue, 13 Dec 2022 23:12:02 GMT
- Title: Extended transfer matrix method for electron transmission in anisotropic
2D materials: Interplay of strain and (a)periodicity of potentials
- Authors: Erik D\'iaz-Bautista, Yonatan Betancur-Ocampo, Alfredo Raya
- Abstract summary: We extend the conventional transfer matrix method to include anisotropic features for electron transmission in two-dimensional materials.
This method allows to study transmission properties of anisotropic and stratified electrostatic potential media.
We apply the extended matrix method to obtain the electron transmission, conductance, and Fano factor for the interplay of an uniperiodicly strained graphene sheet with external one-dimensional aaxial potentials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the conventional transfer matrix method to include anisotropic
features for electron transmission in two-dimensional materials, such as
breaking reflection law in pseudo-spin phases and wave vectors. This method
allows to study transmission properties of anisotropic and stratified
electrostatic potential media from a wide range of tunable parameters, which
include strain tensor and gating. We apply the extended matrix method to obtain
the electron transmission, conductance, and Fano factor for the interplay of an
uniaxially strained graphene sheet with external one-dimensional aperiodic
potentials. Our results suggest the possibility of visualizing this interplay
from conductance measurements.
Related papers
- Emerging holonomy in electron spin scattering [0.5461938536945721]
We develop a method for calculating the scattering matrix of electrons in a one-dimensional coherent conductor connected to two electrodes.
In particular, we show that in the high-energy limit, the transmission matrix aligns with the holonomy, reducing to a pure topological form.
Our results indicate the possibility of achieving near-perfect spin-flip transmission, with implications for use in spintronic applications.
arXiv Detail & Related papers (2025-02-13T14:26:56Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Solvable Two-dimensional Dirac Equation with Matrix Potential: Graphene
in External Electromagnetic Field [0.0]
We find analytically the solutions for a wide class of combinations of matrix and scalar external potentials.
The main tool for this progress was provided by supersymmetrical (SUSY) intertwining relations.
arXiv Detail & Related papers (2024-01-21T15:39:49Z) - Tunable exciton polaritons in band-gap engineered hexagonal boron nitride [0.0]
hexagonal boron nitride (hBN) is a two-dimensional insulator.
external superlattice potential forms a new paradigm for electrostatically tunable excitons in the near- and mid-ultraviolet.
arXiv Detail & Related papers (2023-12-04T14:18:18Z) - Non-volatile Electric Control of Magnetic and Topological Properties of
MnBi2Te4 Thin Films [66.02797153096846]
We propose a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling.
This mechanism uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material.
arXiv Detail & Related papers (2022-12-29T14:51:05Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Nonreciprocal devices based on voltage-tunable junctions [48.7576911714538]
We propose to couple the flux degree of freedom of one mode with the charge degree of freedom of a second mode in a hybrid superconducting-semiconducting architecture.
Nonreciprocity can arise in this architecture in the presence of external static magnetic fields alone.
arXiv Detail & Related papers (2022-09-13T17:49:19Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tunneling Effect in Gapped Phosphorene through Double Barriers [0.0]
Transport properties of charge carriers in phosphorene with a mass term through double barriers are studied.
Results show the highly anisotropic character of phosphorene and the no signature of Klein tunneling at normal incidence contrary to graphene.
arXiv Detail & Related papers (2021-10-18T14:11:21Z) - Fundamental transfer matrix and dynamical formulation of stationary
scattering in two and three dimensions [0.0]
We offer a consistent dynamical formulation of stationary scattering in two and three dimensions.
We show that a proper formulation of this approach requires the introduction of a pair of intertwined transfer matrices each related to the time-evolution operator.
We discuss the utility of our approach in characterizing invisible (scattering-free) potentials and potentials.
arXiv Detail & Related papers (2021-09-14T08:50:31Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.