Variational learning for quantum artificial neural networks
- URL: http://arxiv.org/abs/2103.02498v1
- Date: Wed, 3 Mar 2021 16:10:15 GMT
- Title: Variational learning for quantum artificial neural networks
- Authors: Francesco Tacchino, Stefano Mangini, Panagiotis Kl. Barkoutsos, Chiara
Macchiavello, Dario Gerace, Ivano Tavernelli, Daniele Bajoni
- Abstract summary: We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, quantum computing and machine learning fostered rapid
developments in their respective areas of application, introducing new
perspectives on how information processing systems can be realized and
programmed. The rapidly growing field of Quantum Machine Learning aims at
bringing together these two ongoing revolutions. Here we first review a series
of recent works describing the implementation of artificial neurons and
feed-forward neural networks on quantum processors. We then present an original
realization of efficient individual quantum nodes based on variational
unsampling protocols. We investigate different learning strategies involving
global and local layer-wise cost functions, and we assess their performances
also in the presence of statistical measurement noise. While keeping full
compatibility with the overall memory-efficient feed-forward architecture, our
constructions effectively reduce the quantum circuit depth required to
determine the activation probability of single neurons upon input of the
relevant data-encoding quantum states. This suggests a viable approach towards
the use of quantum neural networks for pattern classification on near-term
quantum hardware.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks.
We demonstrate the potential of these algorithms to learn complex quantum processes with memory.
Numerical simulations indicate that our quantum recurrent neural networks exhibit a striking ability to generalise from small training sets.
arXiv Detail & Related papers (2023-01-19T16:58:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - New quantum neural network designs [0.0]
We investigate the performance of new quantum neural network designs.
We develop a new technique, where we merge feature map and variational circuit into a single parameterized circuit.
We achieve lower loss, better accuracy, and faster convergence.
arXiv Detail & Related papers (2022-03-12T10:20:14Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.