論文の概要: Counterfactual Explanations for Support Vector Machine Models
- arxiv url: http://arxiv.org/abs/2212.07432v1
- Date: Wed, 14 Dec 2022 17:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 16:07:57.840589
- Title: Counterfactual Explanations for Support Vector Machine Models
- Title(参考訳): サポートベクターマシンモデルに対する反事実説明
- Authors: Sebastian Salazar, Samuel Denton, Ansaf Salleb-Aouissi
- Abstract要約: モデル解釈可能性を高めることを目的として, 反実的説明を見つける方法を示す。
また,保護機能を用いて法科学生が司法試験に合格するかどうかを予測するための支援ベクトルマシンモデルを構築した。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle the problem of computing counterfactual explanations -- minimal
changes to the features that flip an undesirable model prediction. We propose a
solution to this question for linear Support Vector Machine (SVMs) models.
Moreover, we introduce a way to account for weighted actions that allow for
more changes in certain features than others. In particular, we show how to
find counterfactual explanations with the purpose of increasing model
interpretability. These explanations are valid, change only actionable
features, are close to the data distribution, sparse, and take into account
correlations between features. We cast this as a mixed integer programming
optimization problem. Additionally, we introduce two novel scale-invariant cost
functions for assessing the quality of counterfactual explanations and use them
to evaluate the quality of our approach with a real medical dataset. Finally,
we build a support vector machine model to predict whether law students will
pass the Bar exam using protected features, and used our algorithms to uncover
the inherent biases of the SVM.
- Abstract(参考訳): 我々は、非現実的な説明を計算し、望ましくないモデル予測を覆す機能の変更を最小限にする問題に取り組む。
本稿では,線形サポートベクトルマシン(svms)モデルに対するこの問題に対する解法を提案する。
さらに、重み付けされたアクションを考慮に入れる方法を導入し、他の機能よりも多くの変更を可能にする。
特に, モデル解釈可能性を高めるために, 反事実的説明を見出す方法を示す。
これらの説明は有効であり、実行可能な機能だけを変更し、データ分散に近く、スパースであり、機能間の相関を考慮に入れている。
我々はこれを混合整数プログラミング最適化問題とみなした。
さらに, 対物的説明の質を評価するための2つの新しいスケール不変コスト関数を導入し, 実際の医療データセットを用いてアプローチの質を評価する。
最後に,保護機能を用いて法定試験に合格するかどうかを予測する支援ベクトルマシンモデルを構築し,そのアルゴリズムを用いて,SVMの固有のバイアスを明らかにする。
関連論文リスト
- LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Semi-supervised counterfactual explanations [3.6810543937967912]
トレーニングデータと同じデータ分布にある反実的説明を生成するという課題に対処する。
この要件は, 自動エンコーダ再構築損失を, 対物探索プロセスに組み込むことによって解決されている。
本稿では,クラスタグ付き入力データを用いた半教師付き方式で自動エンコーダを訓練した場合の対実的説明の解釈性をさらに向上することを示す。
論文 参考訳(メタデータ) (2023-03-22T15:17:16Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
モデルFI監督は、VQAモデルの精度と、Right-to-the-Right-Reasonメトリクスの性能を有意義に向上させることができることを示す。
我々の最高のパフォーマンス手法であるVisual Feature Importance Supervision (VisFIS)は、ベンチマークVQAデータセットで強いベースラインを上回ります。
説明が妥当で忠実な場合には予測がより正確になる。
論文 参考訳(メタデータ) (2022-06-22T17:02:01Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
本稿では,モデルおよびユーザレベルのデシダータに対処するモジュール型説明フレームワークであるCAREを紹介する。
モデルに依存しないアプローチとして、CAREはブラックボックスモデルに対して複数の多様な説明を生成する。
論文 参考訳(メタデータ) (2021-08-18T15:26:59Z) - Causality-based Counterfactual Explanation for Classification Models [11.108866104714627]
本稿では,プロトタイプに基づく対実的説明フレームワーク(ProCE)を提案する。
ProCEは、カウンターファクトデータの特徴の根底にある因果関係を保存することができる。
さらに,提案手法を応用した多目的遺伝的アルゴリズムを考案した。
論文 参考訳(メタデータ) (2021-05-03T09:25:59Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Towards Unifying Feature Attribution and Counterfactual Explanations:
Different Means to the Same End [17.226134854746267]
本稿では,一組の反実例から特徴帰属説明を生成する手法を提案する。
本報告では, 帰属に基づく説明の妥当性を, その必要性と充足性の観点から評価するために, 対実例をいかに活用するかを示す。
論文 参考訳(メタデータ) (2020-11-10T05:41:43Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。