Photon-Pressure with an Effective Negative Mass Microwave Mode
- URL: http://arxiv.org/abs/2212.07461v2
- Date: Thu, 23 May 2024 10:49:02 GMT
- Title: Photon-Pressure with an Effective Negative Mass Microwave Mode
- Authors: Ines C. Rodrigues, Gary A. Steele, Daniel Bothner,
- Abstract summary: We show a microwave mode in a superconducting LC circuit that mimics the dynamics of a negative mass oscillator.
We demonstrate that the effective negative mass dynamics lead to an inversion of dynamical backaction and to sideband-cooling of the low-frequency circuit by a blue-detuned pump field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Harmonic oscillators belong to the most fundamental concepts in physics and are central to many current research fields such as circuit QED, cavity optomechanics and photon-pressure systems. Here, we engineer a microwave mode in a superconducting LC circuit that mimics the dynamics of a negative mass oscillator, and couple it via photon-pressure to a second low-frequency circuit. We demonstrate that the effective negative mass dynamics lead to an inversion of dynamical backaction and to sideband-cooling of the low-frequency circuit by a blue-detuned pump field, which can be intuitively understood by the inverted energy ladder of a negative mass oscillator.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Realizing mechanical dynamical Casimir effect with low-frequency oscillator [0.0]
We realize the mechanical dynamical Casimir effect (DCE) in a hybrid optomechanical system.
The mechanical energy is found to be directly converted into the output photons through a three-wave-mixing mechanism.
It is found that the mechanical frequency can be about two orders of magnitude smaller than the output photons.
arXiv Detail & Related papers (2024-08-05T08:38:44Z) - Simulating electron-vibron energy transfer with quantum dots and resonators [0.0]
Gateable semiconductor quantum dots (QDs) provide a versatile platform for analog quantum simulations.
We represent the molecular vibrational modes by single-mode microwave resonators coupled capacitively to the QDs.
We study the gate-tunable energy transfer from a voltage-biased triple quantum dot (TQD) system to a single damped resonator mode.
arXiv Detail & Related papers (2024-07-03T14:35:17Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Single-photon induced instabilities in a cavity electromechanical device [0.0]
nonlinear radiation-pressure interaction in Cavity-electromechanical systems could result in an unstable response of the mechanical resonator.
By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rate.
Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing.
arXiv Detail & Related papers (2023-09-13T07:33:09Z) - Photon-assisted Landau Zener transitions in a tunable driven Rabi dimer
coupled to a micromechanical resonator [9.117356812163793]
We have investigated photon-assisted Landau-Zener transitions and qubit manipulation in a quantum electrodynamics device.
Results show that low phonon frequencies can alter the qubit dynamics, particularly in the absence of the driving fields.
This study unveils the imperative roles that photons and phonons play in the Rabi dimer model.
arXiv Detail & Related papers (2023-07-20T19:24:39Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Open Quantum-System Simulation of Faraday's Induction Law via Dynamical
Instabilities [0.0]
We propose a novel type of a Bose-Hubbard ladder model to study the physics of dynamical gauge potentials.
A steady-state atomic motion along the legs of the ladder leads either to a pure chiral current, or generates simultaneously chiral and particle currents.
An electromotive force is induced in this dynamical regime as expected from an interpretation based on Faraday's law of induction for the time-dependent synthetic magnetic flux.
arXiv Detail & Related papers (2021-03-02T19:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.