Open Quantum-System Simulation of Faraday's Induction Law via Dynamical
Instabilities
- URL: http://arxiv.org/abs/2103.01979v2
- Date: Wed, 2 Feb 2022 12:40:02 GMT
- Title: Open Quantum-System Simulation of Faraday's Induction Law via Dynamical
Instabilities
- Authors: Elvia Colella, Arkadiusz Kosior, Farokh Mivehvar, Helmut Ritsch
- Abstract summary: We propose a novel type of a Bose-Hubbard ladder model to study the physics of dynamical gauge potentials.
A steady-state atomic motion along the legs of the ladder leads either to a pure chiral current, or generates simultaneously chiral and particle currents.
An electromotive force is induced in this dynamical regime as expected from an interpretation based on Faraday's law of induction for the time-dependent synthetic magnetic flux.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel type of a Bose-Hubbard ladder model based on an open
quantum-gas--cavity-QED setup to study the physics of dynamical gauge
potentials. Atomic tunneling along opposite directions in the two legs of the
ladder is mediated by photon scattering from transverse pump lasers to two
distinct cavity modes. The resulting interplay between cavity photon
dissipation and the optomechanical atomic back-action then induces an
average-density-dependent dynamical gauge field. The dissipation-stabilized
steady-state atomic motion along the legs of the ladder leads either to a pure
chiral current, screening the induced dynamical magnetic field as in the
Meissner effect, or generates simultaneously chiral and particle currents. For
sufficiently strong pump the system enters into a dynamically unstable regime
exhibiting limit-cycle and period-doubled oscillations. Intriguingly, an
electromotive force is induced in this dynamical regime as expected from an
interpretation based on Faraday's law of induction for the time-dependent
synthetic magnetic flux.
Related papers
- Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system [0.0]
We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
arXiv Detail & Related papers (2024-11-01T22:17:24Z) - Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - A topologically protected quantum dynamo effect in a driven spin-boson
model [0.0]
We describe a quantum dynamo effect in a driven system coupled to a harmonic oscillator describing a cavity mode or to a collection of modes forming an Ohmic bosonic bath.
This field opposes the change of the external driving field in a way reminiscent of Faraday's law of induction.
We show that the dynamo effect is directly related to the dynamically measured topology of this spin-$frac12$ and thus in the adiabatic limit provides a topologically protected method to convert driving work into a coherent field in the reservoir.
arXiv Detail & Related papers (2022-08-02T19:37:47Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Vortex-Meissner phase transition induced by two-tone-drive-engineered
artificial gauge potential in the fermionic ladder constructed by
superconducting qubit circuits [3.850637512459572]
Two-tone drives can be used to engineer artificial gauge potential.
Fermionic ladder model penetrated with magnetic flux can be constructed by superconducting flux qubits.
arXiv Detail & Related papers (2020-03-24T03:35:29Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.