論文の概要: Dissecting Distribution Inference
- arxiv url: http://arxiv.org/abs/2212.07591v2
- Date: Fri, 5 Apr 2024 18:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 05:46:40.099177
- Title: Dissecting Distribution Inference
- Title(参考訳): Dissecting Distribution (複数形 Dissecting Distributions)
- Authors: Anshuman Suri, Yifu Lu, Yanjin Chen, David Evans,
- Abstract要約: 分散推論攻撃は、機械学習モデルのトレーニングに使用されるデータの統計的特性を推測することを目的としている。
ブラックボックス攻撃は、ほとんどの設定で最もよく知られているホワイトボックス攻撃よりも優れています。
我々は,従来提案されていた防衛の有効性を評価し,新たな防衛を導入する。
- 参考スコア(独自算出の注目度): 8.14277881525535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
- Abstract(参考訳): 分散推論攻撃は、機械学習モデルのトレーニングに使用されるデータの統計的特性を推測することを目的としている。
これらの攻撃は驚くほど強力であるが、分布予測のリスクに影響を与える要因はよく理解されておらず、ブラックボックスの脅威シナリオであってもトレーニング環境の完全な知識のような強固で非現実的な仮定に依存することがしばしば示されている。
分布予測リスクの理解を深めるため,ほとんどの環境において最もよく知られたホワイトボックス攻撃よりも優れるブラックボックス攻撃を開発した。
この新たな攻撃を用いて,ブラックボックスアクセスにおける敵の知識に関する様々な仮定を緩和しながら,分布推定リスクを評価した。
最後に,従来提案されていた防衛の有効性を評価し,新たな防衛手法を導入する。
ノイズベースの防御は効果がないように見えるが、単純な再サンプリング防御は極めて有効である。
コードはhttps://github.com/iamgroot42/dissecting_distribution_inferenceで入手できる。
関連論文リスト
- FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Post-train Black-box Defense via Bayesian Boundary Correction [9.769249984262958]
深層ニューラルネットワークのためのポストトレインブラックボックス防衛フレームワークを提案する。
事前訓練された分類器を、モデル固有の知識がほとんどないレジリエントな分類器に変えることができる。
また、新たなポストトレイン戦略も装備されており、再トレーニングを回避している。
論文 参考訳(メタデータ) (2023-06-29T14:33:20Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - Theoretical Study of Random Noise Defense against Query-Based Black-Box
Attacks [72.8152874114382]
本研究では、クエリベースのブラックボックス攻撃に対するランダムノイズ防御(RND)と呼ばれる単純だが有望な防御手法を検討する。
軽量で、既製のモデルやその他の防衛戦略と直接組み合わせることができます。
本研究では,クエリベースのブラックボックス攻撃に対する rnd の防御効果と対応する適応攻撃がマグニチュード比に大きく依存することを示すための理論的解析を行った。
論文 参考訳(メタデータ) (2021-04-23T08:39:41Z) - Provable Defense Against Delusive Poisoning [64.69220849669948]
本研究は, 対人訓練が妄想性中毒に対する防御法であることを示す。
これは、敵の訓練が妄想的中毒に対する原則的な防御方法であることを意味している。
論文 参考訳(メタデータ) (2021-02-09T09:19:47Z) - Local Black-box Adversarial Attacks: A Query Efficient Approach [64.98246858117476]
アドリアックは、セキュリティに敏感なシナリオにおけるディープニューラルネットワークの適用を脅かしている。
ブラックボックス攻撃における限られたクエリ内でのみクリーンな例の識別領域を摂動させる新しいフレームワークを提案する。
攻撃成功率の高いブラックボックス摂動時のクエリ効率を大幅に改善できることを示すため,広範な実験を行った。
論文 参考訳(メタデータ) (2021-01-04T15:32:16Z) - Are Adversarial Examples Created Equal? A Learnable Weighted Minimax
Risk for Robustness under Non-uniform Attacks [70.11599738647963]
敵の訓練は、強力な攻撃に耐える数少ない防衛の1つである。
従来の防御機構は、基礎となるデータ分布に従って、サンプルに対する均一な攻撃を前提とします。
非一様攻撃に対して重み付けされたミニマックスリスク最適化を提案する。
論文 参考訳(メタデータ) (2020-10-24T21:20:35Z) - Subpopulation Data Poisoning Attacks [18.830579299974072]
機械学習に対する攻撃は、機械学習アルゴリズムが使用するデータの逆修正を誘導し、デプロイ時に出力を選択的に変更する。
本研究では,エフェサブポピュレーションアタック(emphsubpopulation attack)と呼ばれる新たなデータ中毒攻撃を導入する。
サブポピュレーション攻撃のためのモジュラーフレームワークを設計し、異なるビルディングブロックでインスタンス化し、その攻撃がさまざまなデータセットや機械学習モデルに有効であることを示す。
論文 参考訳(メタデータ) (2020-06-24T20:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。