論文の概要: Event-based Visual Tracking in Dynamic Environments
- arxiv url: http://arxiv.org/abs/2212.07754v1
- Date: Thu, 15 Dec 2022 12:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 17:10:23.378850
- Title: Event-based Visual Tracking in Dynamic Environments
- Title(参考訳): 動的環境におけるイベントベース視覚トラッキング
- Authors: Irene Perez-Salesa, Rodrigo Aldana-Lopez, Carlos Sagues
- Abstract要約: イベントカメラとオフザシェルフ深層学習の両方を活用するためのフレームワークを提案する。
イベントデータを強度フレームに再構成することで、従来のカメラが許容できない状況下でのトラッキング性能が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual object tracking under challenging conditions of motion and light can
be hindered by the capabilities of conventional cameras, prone to producing
images with motion blur. Event cameras are novel sensors suited to robustly
perform vision tasks under these conditions. However, due to the nature of
their output, applying them to object detection and tracking is non-trivial. In
this work, we propose a framework to take advantage of both event cameras and
off-the-shelf deep learning for object tracking. We show that reconstructing
event data into intensity frames improves the tracking performance in
conditions under which conventional cameras fail to provide acceptable results.
- Abstract(参考訳): 動きと光の困難な条件下での視覚的物体追跡は、従来のカメラの能力によって妨げられ、動きのぼやけた画像を生成する。
イベントカメラは、これらの条件下で視覚タスクを堅牢に実行するのに適した新しいセンサーである。
しかし、出力の性質上、オブジェクトの検出と追跡に適用することは自明ではない。
本研究では,イベントカメラと市販のディープラーニングを併用して物体追跡を行うフレームワークを提案する。
イベントデータを強度フレームに再構成することで、従来のカメラが許容できない状況下でのトラッキング性能が向上することを示す。
関連論文リスト
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
本稿では,スムーズなカメラ軌跡を推定し,野生のカジュアルビデオのための高密度点雲を得るための,簡潔でエレガントでロバストなパイプラインを提案する。
提案手法は,複雑な動的課題シーンにおいても,カメラポーズ推定による最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T13:01:16Z) - BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
本稿では,RGB画像とイベントデータを統合した新しいフレームワークであるBlinkTrackを提案する。
本手法は,従来のカルマンフィルタを学習ベースのフレームワークに拡張し,イベントおよびイメージの分岐において微分可能なカルマンフィルタを利用する。
実験の結果、BlinkTrackは既存のイベントベースの手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-09-26T15:54:18Z) - Distractor-aware Event-based Tracking [45.07711356111249]
本稿では,シームズネットワークアーキテクチャ(DANet)にトランスフォーマーモジュールを導入するイベントベースのトラッカーを提案する。
本モデルは主にモーション認識ネットワークとターゲット認識ネットワークで構成され,イベントデータから動作キューとオブジェクトの輪郭の両方を同時に活用する。
私たちのDANetは、後処理なしでエンドツーエンドでトレーニングでき、単一のV100上で80FPS以上で実行できます。
論文 参考訳(メタデータ) (2023-10-22T05:50:20Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Data-driven Feature Tracking for Event Cameras [48.04815194265117]
グレースケールフレームで検出された特徴を追跡するために、低レイテンシイベントを活用するイベントカメラのための、最初のデータ駆動機能トラッカーを紹介した。
合成データから実データに直接ゼロショットを転送することで、我々のデータ駆動トラッカーは、相対的特徴年齢における既存のアプローチを最大120%向上させる。
この性能ギャップはさらに130%増加し、トラッカーを新たな自己超越戦略で実データに適用する。
論文 参考訳(メタデータ) (2022-11-23T10:20:11Z) - PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with
Point and Line Features [3.6355269783970394]
イベントカメラは、フレームレートが固定された強度画像の代わりにピクセルレベルの照明変化をキャプチャするモーションアクティベートセンサーである。
本稿では,ロバストで高精度でリアルタイムな単眼イベントベース視覚慣性オドメトリー(VIO)法を提案する。
論文 参考訳(メタデータ) (2022-09-25T06:14:12Z) - Are High-Resolution Event Cameras Really Needed? [62.70541164894224]
低照度条件や高速環境では、低解像度カメラは高解像度カメラより優れ、帯域幅は大幅に小さくなる。
この主張は,高解像度のイベントカメラが画素当たりのイベントレートが高いことを示す実証的証拠と理論的証拠の両方を提示する。
多くの場合、高解像度のイベントカメラは、これらの条件下では低解像度のセンサーに比べてタスク性能が低い。
論文 参考訳(メタデータ) (2022-03-28T12:06:20Z) - Moving Object Detection for Event-based Vision using k-means Clustering [0.0]
物体検出の移動はコンピュータビジョンにおいて重要な課題である。
イベントベースのカメラは、人間の目の動きを模倣して動作するバイオインスパイアされたカメラである。
本稿では,イベントベースデータにおける移動物体の検出におけるk平均クラスタリング手法の適用について検討する。
論文 参考訳(メタデータ) (2021-09-04T14:43:14Z) - Tracking 6-DoF Object Motion from Events and Frames [0.0]
本研究では,6自由度(6-DoF)物体の動き追跡のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T12:39:38Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
イベントベースオブジェクト追跡のためのパラメトリックオブジェクトレベルの動き/変換モデルを学習し、回帰する新しいディープニューラルネットワークを提案する。
この目的を達成するために,線形時間減衰表現を用いた同期時間曲面を提案する。
我々は、TSLTDフレームのシーケンスを新しい網膜運動回帰ネットワーク(RMRNet)に供給し、エンド・ツー・エンドの5-DoFオブジェクト・モーション・レグレッションを実行する。
論文 参考訳(メタデータ) (2020-02-14T08:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。