Inferring Quantum Network Topology using Local Measurements
- URL: http://arxiv.org/abs/2212.07987v4
- Date: Thu, 26 Oct 2023 01:53:05 GMT
- Title: Inferring Quantum Network Topology using Local Measurements
- Authors: Daniel T. Chen, Brian Doolittle, Jeffrey M. Larson, Zain H. Saleem,
Eric Chitambar
- Abstract summary: We propose an efficient protocol for distinguishing and inferring the topology of a quantum network.
We show that the protocol can be entirely robust to noise and can be implemented via quantum variational optimization.
- Score: 3.549868541921029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical correlations that can be generated across the nodes in a quantum
network depend crucially on its topology. However, this topological information
might not be known a priori, or it may need to be verified. In this paper, we
propose an efficient protocol for distinguishing and inferring the topology of
a quantum network. We leverage entropic quantities -- namely, the von Neumann
entropy and the measured mutual information -- as well as measurement
covariance to uniquely characterize the topology. We show that the entropic
quantities are sufficient to distinguish two networks that prepare GHZ states.
Moreover, if qubit measurements are available, both entropic quantities and
covariance can be used to infer the network topology without state-preparation
assumptions. We show that the protocol can be entirely robust to noise and can
be implemented via quantum variational optimization. Numerical experiments on
both classical simulators and quantum hardware show that covariance is
generally more reliable for accurately and efficiently inferring the topology,
whereas entropy-based methods are often better at identifying the absence of
entanglement in the low-shot regime.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Certifying the Topology of Quantum Networks: Theory and Experiment [0.0]
It is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed.
Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources.
We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons.
arXiv Detail & Related papers (2023-09-22T14:50:38Z) - Learning the tensor network model of a quantum state using a few
single-qubit measurements [0.0]
The constantly increasing dimensionality of artificial quantum systems demands highly efficient methods for their characterization and benchmarking.
Here we present a constructive and numerically efficient protocol which learns a tensor network model of an unknown quantum system.
arXiv Detail & Related papers (2023-09-01T11:11:52Z) - On the Characterization of Quantum Flip Stars with Quantum Network
Tomography [11.545489116237102]
Quantum Network Tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements.
We propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator.
Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately.
arXiv Detail & Related papers (2023-07-12T00:18:15Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.