New monotonicity property of the quantum relative entropy
- URL: http://arxiv.org/abs/2212.07999v1
- Date: Thu, 15 Dec 2022 17:55:17 GMT
- Title: New monotonicity property of the quantum relative entropy
- Authors: M. E. Shirokov
- Abstract summary: Local discontinuity jumps of the quantum relative entropy do not increase under action of quantum channels and operations.
It is proved that the local discontinuity jumps of the quantum relative entropy do not increase under action of quantum channels and operations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is proved that the local discontinuity jumps of the quantum relative
entropy do not increase under action of quantum channels and operations.
Related papers
- Emergence of cosmic structure from Planckian discreteness [47.03992469282679]
In the standard paradigm the inhomogeneities observed in the CMB arise from quantum fluctuations of an initially homogeneous and isotropic vacuum state.<n>We propose an alternative paradigm in which such inhomogeneities are present from the very beginning.<n>Specifically, inhomogeneities in the quantum state at the Planck scale propagate into semiclassical inhomogeneities on CMB scales.
arXiv Detail & Related papers (2025-06-18T12:33:31Z) - Quantum tunneling and anti-tunneling across entropic barriers [44.99833362998488]
We study the dynamics of a quantum particle in a constricted two-dimensional channel.<n>We analyze how the onset of quantum corrections impacts the (semi-intuitive) high-temperature behaviour, as temperature is lowered.
arXiv Detail & Related papers (2025-05-06T19:55:55Z) - Quantum state transfer between superconducting cavities via exchange-free interactions [20.561557006177914]
We propose and experimentally demonstrate a novel protocol for transferring quantum states between superconducting cavities.
This approach resembles quantum teleportation, where quantum information is transferred between different nodes without directly transmitting carrier photons.
We experimentally realize coherent and bidirectional transfer of arbitrary quantum states, including bosonic quantum error correction codes.
arXiv Detail & Related papers (2024-08-26T07:57:39Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - The singularities of the rate function of quantum coherent work in
one-dimensional transverse field Ising model [0.0]
We specialize our discussions to the one-dimensional transverse field quantum Ising model in the coherent Gibbs state.
We find that quantum coherence not only recovers the quantum phase transition destroyed by thermal fluctuations.
It can be manifested that these singularities are rooted in spin flips causing the sudden change of the domain boundaries of spin polarization.
arXiv Detail & Related papers (2023-03-15T03:17:23Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Lower semicontinuity of the relative entropy disturbance and its
corollaries [0.0]
It is proved that the decrease of the quantum relative entropy under action of a quantum operation is a lower semicontinuous function of a pair of arguments.
It implies, in particular, that the local discontinuity jumps of the quantum relative entropy do not increase under action of quantum operations.
arXiv Detail & Related papers (2023-02-09T17:57:00Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Jarzynski-like Equality of Nonequilibrium Information Production Based
on Quantum Cross Entropy [0.8367938108534343]
We employ the one-time measurement scheme to derive a Jarzynski-like equality of nonequilibrium information production.
The derived equality further enables one to explore the roles of the quantum cross entropy in quantum communications, quantum machine learning and quantum thermodynamics.
arXiv Detail & Related papers (2022-09-05T04:47:10Z) - Quantum Entropy [0.12183405753834559]
We propose a quantum entropy that quantify the randomness of a pure quantum state via a conjugate pair of observables forming the quantum phase space.
We conjecture an entropy law whereby that entropy of a closed system never decreases, implying a time arrow for particles physics.
arXiv Detail & Related papers (2021-06-29T13:04:55Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.