Experimental Adiabatic Quantum Metrology with the Heisenberg scaling
- URL: http://arxiv.org/abs/2102.07056v1
- Date: Sun, 14 Feb 2021 03:08:54 GMT
- Title: Experimental Adiabatic Quantum Metrology with the Heisenberg scaling
- Authors: Ran Liu, Yu Chen, Min Jiang, Xiaodong Yang, Ze Wu, Yuchen Li, Haidong
Yuan, Xinhua Peng, Jiangfeng Du
- Abstract summary: We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
- Score: 21.42706958416718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The critical quantum metrology, which exploits the quantum phase transition
for high precision measurement, has gained increasing attention recently. The
critical quantum metrology with the continuous quantum phase transition,
however, is experimentally very challenging since the continuous quantum phase
transition only exists at the thermal dynamical limit. Here, we propose an
adiabatic scheme on a perturbed Ising spin model with the first order quantum
phase transition. By employing the Landau-Zener anticrossing, we can not only
encode the unknown parameter in the ground state but also tune the energy gap
to control the evolution time of the adiabatic passage. We experimentally
implement the adiabatic scheme on the nuclear magnetic resonance and show that
the achieved precision attains the Heisenberg scaling. The advantages of the
scheme-easy implementation, robust against the decay, tunable energy gap-are
critical for practical applications of quantum metrology.
Related papers
- Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Signatures of Quantum Phase Transitions in Driven Dissipative Spin Chains [0.0]
We show that a driven-dissipative quantum spin chain exhibits a peculiar sensitivity to the ground-state quantum phase transition.
We develop a versatile analytical approach that becomes exact with vanishing dissipation.
arXiv Detail & Related papers (2024-05-30T22:25:15Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Equivariant Variational Quantum Eigensolver to detect Phase Transitions through Energy Level Crossings [0.0]
We introduce an equivariant quantum circuit that preserves the total spin and the translational symmetry to accurately describe singlet and triplet excited states.
We also assess the impact of noise on the variational state, showing that conventional mitigation techniques like Zero Noise Extrapolation reliably restore its physical properties.
arXiv Detail & Related papers (2024-03-11T18:51:57Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
We propose a thermodynamic-criticality-enhanced quantum sensing scenario at finite temperature.
It is revealed that the thermodynamic criticality of the Dicke model can significantly improve the sensing precision.
arXiv Detail & Related papers (2021-10-15T02:39:31Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.