Interacting Bose-condensed gases
- URL: http://arxiv.org/abs/2212.08065v1
- Date: Thu, 15 Dec 2022 18:59:45 GMT
- Title: Interacting Bose-condensed gases
- Authors: Christoph Eigen and Robert P. Smith
- Abstract summary: We focus on phenomena that have been explored in ultracold atom experiments, covering both tuneable contact interactions and dipolar interactions.
Our discussion includes: modifications to the ground state and excitation spectrum, critical behaviour near the Bose--Einstein condensation temperature, the unitary regime where the interactions are as strong as allowed by quantum mechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide an overview of the effects of interactions in Bose-condensed
gases. We focus on phenomena that have been explored in ultracold atom
experiments, covering both tuneable contact interactions and dipolar
interactions. Our discussion includes: modifications to the ground state and
excitation spectrum, critical behaviour near the Bose--Einstein condensation
temperature, the unitary regime where the interactions are as strong as allowed
by quantum mechanics, quantum droplets in mixtures, and supersolids in dipolar
gases.
Related papers
- Impurities and polarons in bosonic quantum gases: a review on recent progress [0.0]
This review describes the field of Bose polarons, arising when mobile impurities are immersed into a bosonic quantum gas.
The latter can be realized by a Bose-Einstein condensate (BEC) of ultracold atoms, or of exciton polaritons in a semiconductor.
arXiv Detail & Related papers (2024-10-12T07:44:01Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Cooperative effects in dense cold atomic gases including magnetic dipole
interactions [0.0]
We investigate cooperative effects in cold atomic gases exhibiting both electric and magnetic dipole-dipole interactions.
For quantum degenerate gases, we study the interplay between sub- and superradiance effects and the fermionic or bosonic quantum statistics nature of the ensemble.
arXiv Detail & Related papers (2023-06-20T12:17:07Z) - Microcanonical and Canonical Fluctuations in Bose-Einstein Condensates
-- Fock state sampling approach [0.0]
The fluctuations of the atom number between a Bose-Einstein condensate and the surrounding thermal gas have been the subject of a long standing theoretical debate.
Here we introduce the so-called Fock state sampling method to solve this classic problem of current experimental interest for weakly interacting gases.
A suppression of the predicted peak fluctuations is observed when using a microcanonical with respect to a canonical ensemble. Moreover, interactions lead to a shift of the temperature of peak fluctuations for harmonically trapped gases.
arXiv Detail & Related papers (2022-07-10T20:54:30Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - On the effect of repulsive interactions on Bose-Einstein condensation in
the Luttinger-Sy model [0.0]
We investigate the effect of repulsive pair interactions on Bose-Einstein condensation in a random one-dimensional system known as the Luttinger-Sy model at positive temperature.
We prove in both cases that for sufficiently strong interactions all eigenstates of the non-interacting one-particle Luttinger-Sy Hamiltonian as well as any sufficiently localized one-particle state are almost surely not macroscopically occupied.
arXiv Detail & Related papers (2020-07-13T15:36:23Z) - Effective p-wave Fermi-Fermi Interaction Induced by Bosonic Superfluids [8.5232177031029]
We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature.
We find the emergence of the composite fermion pairs at low temperatures.
arXiv Detail & Related papers (2020-01-02T13:03:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.