Cooperative effects in dense cold atomic gases including magnetic dipole
interactions
- URL: http://arxiv.org/abs/2306.11486v1
- Date: Tue, 20 Jun 2023 12:17:07 GMT
- Title: Cooperative effects in dense cold atomic gases including magnetic dipole
interactions
- Authors: N. S. Bassler, I. Varma, M. Proske, P. Windpassinger, K. P. Schmidt
and C. Genes
- Abstract summary: We investigate cooperative effects in cold atomic gases exhibiting both electric and magnetic dipole-dipole interactions.
For quantum degenerate gases, we study the interplay between sub- and superradiance effects and the fermionic or bosonic quantum statistics nature of the ensemble.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically investigate cooperative effects in cold atomic gases
exhibiting both electric and magnetic dipole-dipole interactions, such as
occurring for example in clouds of dysprosium atoms. We distinguish between the
quantum degenerate case, where we take a many body physics approach and the
quantum non-degenerate case, where we use the formalism of open system
dynamics. For quantum non-degenerate gases, we illustrate the emergence of
tailorable spin models in the high-excitation limit. In the low-excitation
limit, we provide analytical and numerical results detailing the effect of
magnetic interactions on the directionality of scattered light and characterize
sub- and superradiant effects. For quantum degenerate gases, we study the
interplay between sub- and superradiance effects and the fermionic or bosonic
quantum statistics nature of the ensemble.
Related papers
- Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Observation of Universal Hall Response in Strongly Interacting Fermions [0.0]
We use an atomic quantum simulator to track the motion of ultracold fermions in two-leg ribbons threaded by artificial magnetic fields.
We unveil a universal interaction-independent behavior above an interaction threshold, in agreement with theoretical analyses.
arXiv Detail & Related papers (2022-05-26T18:15:06Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Equivalence of dissipative and dissipationless dynamics of interacting
quantum systems with its application to the unitary Fermi gas [0.0]
We analytically study quantum dissipative dynamics described by the Caldirola-Kanai model with inter-particle interactions.
We have found that the dissipative quantum dynamics of the Caldirola-Kanai model can be exactly mapped to a dissipationless quantum dynamics under a negative external harmonic potential.
arXiv Detail & Related papers (2021-06-25T13:18:03Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.