Impurities and polarons in bosonic quantum gases: a review on recent progress
- URL: http://arxiv.org/abs/2410.09413v1
- Date: Sat, 12 Oct 2024 07:44:01 GMT
- Title: Impurities and polarons in bosonic quantum gases: a review on recent progress
- Authors: F. Grusdt, N. Mostaan, E. Demler, Luis A. Peña Ardila,
- Abstract summary: This review describes the field of Bose polarons, arising when mobile impurities are immersed into a bosonic quantum gas.
The latter can be realized by a Bose-Einstein condensate (BEC) of ultracold atoms, or of exciton polaritons in a semiconductor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This review describes the field of Bose polarons, arising when mobile impurities are immersed into a bosonic quantum gas. The latter can be realized by a Bose-Einstein condensate (BEC) of ultracold atoms, or of exciton polaritons in a semiconductor, which has led to a series of experimental observations of Bose polarons near inter-species Feshbach resonances that we survey. Following an introduction to the topic, with references to its historic roots and a presentation of the Bose polaron Hamiltonian, we summarize state-of-the-art experiments. Next we provide a detailed discussion of polaron models, starting from the ubiquitous Fr\"ohlich Hamiltonian that applies at weak couplings. We proceed by a survey of concurrent theoretical methods used for solving strongly interacting Bose polaron problems. The subsequent sections are devoted to the large bodies of work investigating strong coupling Bose polarons, including detailed comparisons with radio-frequency (RF) spectra obtained in ultracold atom experiments; to investigations of universal few-body and Efimov states associated with a Feshbach resonance in atomic mixtures; to studies of quantum dynamics and polarons out of equilibrium; Bose polarons in low-dimensional; induced interactions among polarons and bipolaron formation; and to Bose polarons at non-zero temperatures. We end our review by detailed discussions of closely related experimental setups and systems, including ionic impurities, systems with strong light-matter interactions, and variations and extensions of the Bose polaron concepts e.g. to baths with topological order or strong interactions relevant for correlated electrons. Finally, an outlook is presented, highlighting possible future research directions and open questions in the field as a whole.
Related papers
- Universal quantum dynamics of Bose polarons [0.0]
We measure the spectral properties and real-time dynamics of mobile impurities injected into a homogeneous Bose--Einstein condensate.
We map out both attractive and repulsive branches of polaron quasiparticles.
For near-resonant interactions the polarons are no longer well defined, but the universality still holds.
arXiv Detail & Related papers (2024-02-22T18:59:55Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - A unified theory of strong coupling Bose polarons: From repulsive
polarons to non-Gaussian many-body bound states [0.0]
We show that the interplay of impurity-induced instability and stabilization by repulsive boson-boson interactions results in a discrete set of metastable many-body bound states.
This work provides a unified theory of attractive and repulsive Bose polarons on the repulsive side of the Feshbach resonance.
arXiv Detail & Related papers (2023-05-01T14:05:11Z) - Interacting Bose-condensed gases [0.0]
We focus on phenomena that have been explored in ultracold atom experiments, covering both tuneable contact interactions and dipolar interactions.
Our discussion includes: modifications to the ground state and excitation spectrum, critical behaviour near the Bose--Einstein condensation temperature, the unitary regime where the interactions are as strong as allowed by quantum mechanics.
arXiv Detail & Related papers (2022-12-15T18:59:45Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the
Strong Coupling Regime [0.0]
We present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a non-perturbative theory.
We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings.
arXiv Detail & Related papers (2021-01-28T13:50:03Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum dark solitons in ultracold one-dimensional Bose and Fermi gases [0.0]
Solitons are ubiquitous phenomena that appear, among others, in the description of tsunami waves.
This tutorial provides a general overview of the ultracold contact interacting Bose and Fermi systems.
arXiv Detail & Related papers (2020-09-26T09:53:17Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.