Huber-energy measure quantization
- URL: http://arxiv.org/abs/2212.08162v3
- Date: Fri, 22 Nov 2024 09:47:27 GMT
- Title: Huber-energy measure quantization
- Authors: Gabriel Turinici,
- Abstract summary: We describe an algorithm which finds the best approximation of a target probability law by a sum of $Q$ Dirac masses.
The procedure is implemented by minimizing the statistical distance between the original measure and its quantized version.
- Score: 0.0
- License:
- Abstract: We describe a measure quantization procedure i.e., an algorithm which finds the best approximation of a target probability law (and more generally signed finite variation measure) by a sum of $Q$ Dirac masses ($Q$ being the quantization parameter). The procedure is implemented by minimizing the statistical distance between the original measure and its quantized version; the distance is built from a negative definite kernel and, if necessary, can be computed on the fly and feed to a stochastic optimization algorithm (such as SGD, Adam, ...). We investigate theoretically the fundamental questions of existence of the optimal measure quantizer and identify what are the required kernel properties that guarantee suitable behavior. We propose two best linear unbiased (BLUE) estimators for the squared statistical distance and use them in an unbiased procedure, called HEMQ, to find the optimal quantization. We test HEMQ on several databases: multi-dimensional Gaussian mixtures, Wiener space cubature, Italian wine cultivars and the MNIST image database. The results indicate that the HEMQ algorithm is robust and versatile and, for the class of Huber-energy kernels, matches the expected intuitive behavior.
Related papers
- Quantum Multiple Eigenvalue Gaussian filtered Search: an efficient and versatile quantum phase estimation method [13.34671442890838]
This work proposes a new approach for the problem of multiple eigenvalue estimation: Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS)
QMEGS is the first algorithm to simultaneously satisfy the Heisenberg-limited scaling without relying on any spectral gap assumption.
Numerical results validate the efficiency of our proposed algorithm in various regimes.
arXiv Detail & Related papers (2024-02-01T20:55:11Z) - Stochastic Quantum Sampling for Non-Logconcave Distributions and
Estimating Partition Functions [13.16814860487575]
We present quantum algorithms for sampling from nonlogconcave probability distributions.
$f$ can be written as a finite sum $f(x):= frac1Nsum_k=1N f_k(x)$.
arXiv Detail & Related papers (2023-10-17T17:55:32Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
We provide a complete quantum circuit-level description of the algorithm from problem input to problem output.
We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm.
arXiv Detail & Related papers (2022-11-22T18:54:48Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Toward a quantum computing algorithm to quantify classical and quantum
correlation of system states [0.0]
We design a variational hybrid quantum-classical (VHQC) algorithm to achieve classical and quantum correlations for system states.
We numerically test the performance of our algorithm at finding a correlation of some density matrices.
arXiv Detail & Related papers (2021-11-17T09:40:30Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Quantum-classical eigensolver using multiscale entanglement
renormalization [0.0]
We propose a variational quantum eigensolver (VQE) for the simulation of strongly-correlated quantum matter.
It can have substantially lower costs than corresponding classical algorithms.
It is particularly attractive for ion-trap devices with ion-shuttling capabilities.
arXiv Detail & Related papers (2021-08-30T17:46:35Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Variational Quantum Algorithms for Trace Distance and Fidelity
Estimation [7.247285982078057]
We introduce hybrid quantum-classical algorithms for two distance measures on near-term quantum devices.
First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm.
Second, we introduce the Variational Fidelity Estimation (VFE) algorithm.
arXiv Detail & Related papers (2020-12-10T15:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.