論文の概要: Controllable Text Generation via Probability Density Estimation in the
Latent Space
- arxiv url: http://arxiv.org/abs/2212.08307v1
- Date: Fri, 16 Dec 2022 07:11:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 15:11:25.364473
- Title: Controllable Text Generation via Probability Density Estimation in the
Latent Space
- Title(参考訳): 潜在空間における確率密度推定による可制御テキスト生成
- Authors: Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan Zhang, Heng Gong, Bing
Qin
- Abstract要約: 本稿では,潜在空間における確率密度推定を用いた新しい制御フレームワークを提案する。
本手法では,非可逆変換関数である正規化フローを用いて,潜在空間の複素分布を先行空間の単純ガウス分布にマッピングする。
単一属性制御と多属性制御の実験により,本手法は属性関連性やテキスト品質の強いベースラインよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 17.97374410245602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous work on controllable text generation has explored the idea of
control from the latent space, such as optimizing a representation with
attribute-related classifiers or sampling a representation from relevant
discrete samples. However, they are not effective enough in modeling both the
latent space and the control, leaving controlled text with low quality and
diversity. In this work, we propose a novel control framework using probability
density estimation in the latent space. Our method utilizes an invertible
transformation function, the Normalizing Flow, that maps the complex
distributions in the latent space to simple Gaussian distributions in the prior
space. Thus, we can perform sophisticated and flexible control in the prior
space and feed the control effects back into the latent space owing to the
one-one-mapping property of invertible transformations. Experiments on
single-attribute controls and multi-attribute control reveal that our method
outperforms several strong baselines on attribute relevance and text quality
and achieves the SOTA. Further analysis of control strength adjustment
demonstrates the flexibility of our control strategy.
- Abstract(参考訳): 制御可能なテキスト生成に関するこれまでの研究は、属性関連分類器による表現の最適化や、関連する離散サンプルからの表現のサンプリングなど、潜在空間からの制御のアイデアを探求してきた。
しかし、それらは潜在空間と制御の両方をモデル化するのに十分な効果がなく、制御されたテキストは品質と多様性が低いままである。
本研究では,潜在空間における確率密度推定を用いた新しい制御フレームワークを提案する。
本手法では,非可逆変換関数である正規化フローを用いて,潜在空間の複素分布を先行空間の単純ガウス分布にマッピングする。
したがって、先行空間において洗練されたフレキシブルな制御を行い、可逆変換のワンワンマッピング特性により、制御効果を潜在空間にフィードバックすることができる。
単一属性制御と多属性制御の実験により,本手法は属性関連性やテキスト品質に優れ,SOTAを実現する。
制御強度調整のさらなる分析は,制御戦略の柔軟性を示す。
関連論文リスト
- OmniControl: Control Any Joint at Any Time for Human Motion Generation [46.293854851116215]
テキスト条件付き人体動作生成モデルにフレキシブルな空間制御信号を統合するために,OmniControlという新しい手法を提案する。
本稿では,入力制御信号に厳密に適合した動作を実現するための解析的空間ガイダンスを提案する。
同時に、全ての関節を洗練してよりコヒーレントな動きを生み出すためにリアリズムガイダンスが導入された。
論文 参考訳(メタデータ) (2023-10-12T17:59:38Z) - Controllable Text Generation with Residual Memory Transformer [4.9329649616940205]
任意の時間ステップでCLMを生成するための,非侵襲的で軽量な制御プラグインを提案する。
提案されているプラグイン、すなわちResidual Memory Transformer (RMT)は、任意の種類の制御条件を受け入れることができるエンコーダとデコーダのセットアップを備えている。
各種制御タスクにおいて, 自動評価と人的評価の両面で, 広範囲な実験が実施されている。
論文 参考訳(メタデータ) (2023-09-28T08:13:33Z) - Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image
Generation [79.8881514424969]
テキスト条件拡散モデルは多種多様な内容の高忠実度画像を生成することができる。
しかし、言語表現はしばしば、想定された目的像の曖昧な記述を示す。
様々なモダリティを1つの埋め込みに混ぜるパイプラインであるCocktailを提案する。
論文 参考訳(メタデータ) (2023-06-01T17:55:32Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
マルチアスペクト制御可能なテキスト生成は、複数の望ましい属性を同時に持つ流動文を生成することを目的としている。
マルチアスペクト制御のための新しいアプローチ、すなわちMacLaSaを導入し、複数の側面に対してコンパクトな潜在空間を推定する。
また,MacLaSaは,高い推論速度を維持しつつ,属性関連性やテキスト品質を高いベースラインで向上させることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:30:35Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
モデル予測制御(MPC)に対するサンプリングに基づくアプローチは、MPCに対する現代のアプローチの基盤となっている。
我々は、学習された分布を最大限に活用できるように、潜在空間における全ての操作を実行することを提案する。
具体的には、学習問題を双方向の最適化として捉え、バックプロパゲーションスルータイムでコントローラをトレーニングする方法を示す。
論文 参考訳(メタデータ) (2022-12-05T20:35:36Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - Low-Rank Subspaces in GANs [101.48350547067628]
この研究は、GAN生成をより正確に制御できる低ランクな部分空間を導入している。
LowRankGAN は属性多様体の低次元表現を見つけることができる。
さまざまなデータセットでトレーニングされた最先端のGANモデル(StyleGAN2やBigGANなど)の実験は、私たちのLowRankGANの有効性を示しています。
論文 参考訳(メタデータ) (2021-06-08T16:16:32Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。