Instance-dependent Label Distribution Estimation for Learning with Label Noise
- URL: http://arxiv.org/abs/2212.08380v2
- Date: Mon, 04 Nov 2024 07:32:22 GMT
- Title: Instance-dependent Label Distribution Estimation for Learning with Label Noise
- Authors: Zehui Liao, Shishuai Hu, Yutong Xie, Yong Xia,
- Abstract summary: Noise transition matrix (NTM) estimation is a promising approach for learning with label noise.
We propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification.
Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.
- Score: 20.479674500893303
- License:
- Abstract: Noise transition matrix (NTM) estimation is a promising approach for learning with label noise. It can infer clean posterior probabilities, known as Label Distribution (LD), based on noisy ones and reduce the impact of noisy labels. However, this estimation is challenging, since the ground truth labels are not always available. Most existing methods estimate a global NTM using either correctly labeled samples (anchor points) or detected reliable samples (pseudo anchor points). These methods heavily rely on the existence of anchor points or the quality of pseudo ones, and the global NTM can hardly provide accurate label transition information for each sample, since the label noise in real applications is mostly instance-dependent. To address these challenges, we propose an Instance-dependent Label Distribution Estimation (ILDE) method to learn from noisy labels for image classification. The method's workflow has three major steps. First, we estimate each sample's noisy posterior probability, supervised by noisy labels. Second, since mislabeling probability closely correlates with inter-class correlation, we compute the inter-class correlation matrix to estimate the NTM, bypassing the need for (pseudo) anchor points. Moreover, for a precise approximation of the instance-dependent NTM, we calculate the inter-class correlation matrix using only mini-batch samples rather than the entire training dataset. Third, we transform the noisy posterior probability into instance-dependent LD by multiplying it with the estimated NTM, using the resulting LD for enhanced supervision to prevent DCNNs from memorizing noisy labels. The proposed ILDE method has been evaluated against several state-of-the-art methods on two synthetic and three real-world noisy datasets. Our results indicate that the proposed ILDE method outperforms all competing methods, no matter whether the noise is synthetic or real noise.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Federated Learning with Instance-Dependent Noisy Label [6.093214616626228]
FedBeat aims to build a global statistically consistent classifier using the IDN transition matrix (IDNTM)
Experiments conducted on CIFAR-10 and SVHN verify that the proposed method significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-16T05:08:02Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for
Noisy Labels [0.9699640804685629]
Large-scale datasets tend to contain mislabeled samples that can be memorized by deep neural networks (DNNs)
We present Ensemble Noise-robust K-fold Cross-Validation Selection (E-NKCVS) to effectively select clean samples from noisy data.
We evaluate our approach on various image and text classification tasks where the labels have been manually corrupted with different noise ratios.
arXiv Detail & Related papers (2021-07-06T02:14:52Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - Confidence Scores Make Instance-dependent Label-noise Learning Possible [129.84497190791103]
In learning with noisy labels, for every instance, its label can randomly walk to other classes following a transition distribution which is named a noise model.
We introduce confidence-scored instance-dependent noise (CSIDN), where each instance-label pair is equipped with a confidence score.
We find with the help of confidence scores, the transition distribution of each instance can be approximately estimated.
arXiv Detail & Related papers (2020-01-11T16:15:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.