Large baseline optical imaging assisted by single photons and linear
quantum optics
- URL: http://arxiv.org/abs/2212.08516v2
- Date: Thu, 6 Apr 2023 07:47:37 GMT
- Title: Large baseline optical imaging assisted by single photons and linear
quantum optics
- Authors: Marta Maria Marchese and Pieter Kok
- Abstract summary: We show that it is possible to extend the baseline of an interferometric optical telescope and thus improve diffraction-limited imaging of point source positions.
The quantum interferometer is based on single-photon sources, linear optical circuits, and efficient photon number counters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we show that by combining quantum metrology and networking
tools, it is possible to extend the baseline of an interferometric optical
telescope and thus improve diffraction-limited imaging of point source
positions. The quantum interferometer is based on single-photon sources, linear
optical circuits, and efficient photon number counters. Surprisingly, with
thermal (stellar) sources of low photon number per mode and high transmission
losses across the baseline, the detected photon probability distribution still
retains a large amount of Fisher information about the source position,
allowing for a significant improvement in the resolution of positioning point
sources, on the order of 10 {\mu}as. Our proposal can be implemented with
current technology. In particular, our proposal does not require experimental
optical quantum memories.
Related papers
- Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Enhancing quantum cryptography with quantum dot single-photon sources [0.0]
Quantum dot-based single-photon sources are remarkable candidates.
We show that these sources provide additional security benefits, thanks to the tunability of coherence in the emitted photon-number states.
We identify the optimal optical pumping scheme for the main quantum-cryptographic primitives.
arXiv Detail & Related papers (2022-04-25T15:46:12Z) - Estimating the photon-number distribution of photonic channels with
realistic devices and applications in photonic quantum information processing [2.549884936158282]
Characterising the input-output photon-number distribution of an unknown optical quantum channel is an important task for many applications in quantum information processing.
We propose a general method to rigorously bound the input-output photon number distribution of an unknown optical channel using standard optical devices.
arXiv Detail & Related papers (2021-02-16T19:25:26Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Scalable integrated single-photon source [0.0]
Photonic qubits are key enablers for quantum-information processing deployable across a distributed quantum network.
A main challenge is to overcome noise and decoherence processes in order to reach the benchmarks on generation efficiency and photon indistinguishability.
We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an 'on-chip'
The device produces long strings of $>100$ single photons without any observable decrease in the mutual indistinguishability between photons.
arXiv Detail & Related papers (2020-03-19T17:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.