Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer
- URL: http://arxiv.org/abs/2401.17836v2
- Date: Mon, 16 Sep 2024 13:59:13 GMT
- Title: Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer
- Authors: Konstantin Katamadze, Anna Romanova, Denis Chupakhin, Alexander Pashchenko, Sergei Kulik,
- Abstract summary: We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Broadband correlated photon pairs (biphotons) are valuable in quantum metrology, but current generation methods either involve complex nonlinear structures or lack sufficient bandwidth and brightness. In this work, we theoretically describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum, achieved by using a tightly focused pump in a bulk nonlinear crystal. As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (QOCT). Utilizing the source enables the demonstration of record resolution and dispersion cancellation for this QOCT scheme.
Related papers
- Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - How to use the dispersion in the $χ^{(3)}$ tensor for broadband generation of polarization-entangled photons [0.0]
Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies.
We show broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal.
arXiv Detail & Related papers (2024-08-21T09:43:23Z) - Large baseline optical imaging assisted by single photons and linear
quantum optics [0.0]
We show that it is possible to extend the baseline of an interferometric optical telescope and thus improve diffraction-limited imaging of point source positions.
The quantum interferometer is based on single-photon sources, linear optical circuits, and efficient photon number counters.
arXiv Detail & Related papers (2022-12-16T15:00:32Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Measuring the joint spectral mode of photon pairs using intensity
interferometry [0.0]
We present and experimentally demonstrate a scheme based on intensity interferometry to measure the joint spectral mode of photon pairs.
Our scheme does not require phase stability, nonlinearities, or spectral shaping, and thus is an experimentally simple way of measuring the modal structure of quantum light.
arXiv Detail & Related papers (2021-07-13T17:04:40Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.