論文の概要: Detection-aware multi-object tracking evaluation
- arxiv url: http://arxiv.org/abs/2212.08536v1
- Date: Fri, 16 Dec 2022 15:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 15:39:35.239891
- Title: Detection-aware multi-object tracking evaluation
- Title(参考訳): 検出対応多対象追跡評価
- Authors: Juan C. SanMiguel, Jorge Mu\~noz, Fabio Poiesi
- Abstract要約: 本研究では,異なる検出器を用いたトラッカー評価を行うため,TEM(Tracking Effort Measure)と呼ばれる新しい性能指標を提案する。
TEMは、入力検出に対する相関を小さくして、トラッカーによってなされた労力を定量化することができる。
- 参考スコア(独自算出の注目度): 1.7880586070278561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How would you fairly evaluate two multi-object tracking algorithms (i.e.
trackers), each one employing a different object detector? Detectors keep
improving, thus trackers can make less effort to estimate object states over
time. Is it then fair to compare a new tracker employing a new detector with
another tracker using an old detector? In this paper, we propose a novel
performance measure, named Tracking Effort Measure (TEM), to evaluate trackers
that use different detectors. TEM estimates the improvement that the tracker
does with respect to its input data (i.e. detections) at frame level
(intra-frame complexity) and sequence level (inter-frame complexity). We
evaluate TEM over well-known datasets, four trackers and eight detection sets.
Results show that, unlike conventional tracking evaluation measures, TEM can
quantify the effort done by the tracker with a reduced correlation on the input
detections. Its implementation is publicly available online at
https://github.com/vpulab/MOT-evaluation.
- Abstract(参考訳): 2つの多対象追跡アルゴリズム(つまりトラッカー)は、それぞれ異なる物体検出器を用いてどのように評価するのですか?
検出器は改善を続けるため、トラッカーは時間の経過とともにオブジェクト状態を見積もる労力を減らすことができる。
新しい検出器を使った新しいトラッカーと、古い検出器を使った別のトラッカーを比較するのが妥当だろうか?
本稿では,異なる検出器を用いたトラッカー評価を行うため,TEM(Tracking Effort Measure)と呼ばれる新しい性能指標を提案する。
TEMは、トラッカーが入力データ(すなわち、フレーム間複雑性)とシーケンスレベル(フレーム間複雑さ)に関して行う改善を推定する。
我々は、よく知られたデータセット、4つのトラッカー、8つの検出セットに対してTEMを評価する。
その結果、従来のトラッキング評価尺度とは異なり、temは入力検出の相関が小さく、トラッカーが行う労力を定量化できることがわかった。
実装はhttps://github.com/vpulab/MOT-evaluation.comで公開されている。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Comparative study of multi-person tracking methods [0.0]
本研究の目的は,これらの手法の発見と追跡パイプラインにおけるこれらのアルゴリズムに関する有用な洞察を提供することである。
われわれはMOT17Detデータセットを用いて歩行者検出モデルを訓練した。
次に,トラクタ++がSORTよりも優れたマルチパーソントラッキングアルゴリズムであることを示す実験結果を示す。
論文 参考訳(メタデータ) (2023-10-07T14:29:57Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
我々はオブジェクトの検出と追跡を共同で解決するスパース時間R-CNNであるMinkowski Trackerを提案する。
領域ベースCNN(R-CNN)に着想を得て,物体検出器R-CNNの第2段階として動きを追跡することを提案する。
大規模実験では,本手法の総合的な性能向上は4つの要因によることがわかった。
論文 参考訳(メタデータ) (2022-08-22T04:47:40Z) - Tracking Every Thing in the Wild [61.917043381836656]
我々は,新しい測定基準であるTrack Every Thing Accuracy(TETA)を導入し,測定結果を3つのサブファクター(ローカライゼーション,アソシエーション,分類)に分割する。
実験の結果、TETAはトラッカーをより包括的に評価し、TETerはBDD100KとTAOに挑戦する大規模データセットを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2022-07-26T15:37:19Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
トラックの歴史的外観距離をインクリメンタルなガウス混合モデル(IGMM)でモデル化するハイブリッドトラックアソシエーションアルゴリズムを提案する。
3つのMOTベンチマークによる実験結果から,HTAが目標識別性能を向上し,追跡速度に多少の妥協を施すことが確認された。
論文 参考訳(メタデータ) (2021-07-01T14:44:12Z) - Global Correlation Network: End-to-End Joint Multi-Object Detection and
Tracking [2.749204052800622]
本稿では,global correlation network (gcnet) という,エンドツーエンドでマルチオブジェクト検出と追跡を行うネットワークを提案する。
gcnetはオフセット予測の代わりに絶対サイズと境界ボックスの座標の回帰のためにグローバル相関層を導入する。
GCNetによる検出と追跡のパイプラインは概念的にはシンプルで、非最大抑制、データアソシエーション、その他の複雑な追跡戦略を必要としない。
論文 参考訳(メタデータ) (2021-03-23T13:16:42Z) - SMOT: Single-Shot Multi Object Tracking [39.34493475666044]
シングルショットマルチオブジェクトトラッカー(SMOT)は、任意のシングルショット検出器(SSD)モデルをオンラインマルチオブジェクトトラッカーに変換する新しいトラッキングフレームワークである。
Hannah、Music Videos、MOT17の3つのオブジェクトトラッキングのベンチマークにおいて、提案されたSMOTは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-10-30T02:46:54Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
本稿では,複数の物体の運動パラメータを推定し,共同検出と関連付けを行うディープ・モーション・モデリング・ネットワーク(DMM-Net)を提案する。
DMM-Netは、人気の高いUA-DETRACチャレンジで12.80 @120+ fpsのPR-MOTAスコアを達成した。
また,車両追跡のための大規模な公開データセットOmni-MOTを合成し,精密な接地トルースアノテーションを提供する。
論文 参考訳(メタデータ) (2020-08-20T08:05:33Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT)法は、トラッキング・バイ・検出のパラダイムに従っている。
混み合ったシーンに適したMOTパラダイムであるトラッキング・バイ・カウントを提案する。
論文 参考訳(メタデータ) (2020-07-18T19:51:53Z) - Tracking by Instance Detection: A Meta-Learning Approach [99.66119903655711]
本稿では,高性能トラッカー構築のための3段階の原理的手法を提案する。
我々は2つの現代的な検出器であるRetinaNetとFCOSをベースに、Retina-MAMLとFCOS-MAMLという2つのトラッカーを構築した。
両方のトラッカーは40FPSでリアルタイムに動作します。
論文 参考訳(メタデータ) (2020-04-02T05:55:06Z) - Supervised and Unsupervised Detections for Multiple Object Tracking in
Traffic Scenes: A Comparative Study [11.024591739346294]
我々はMF-Trackerと呼ばれる複数のオブジェクトトラッカーを提案し、そのトラッキングフレームワークに複数の古典的特徴(空間的特徴と色)と近代的特徴(検出ラベルと再識別機能)を統合する。
トラッカーは、教師なし・教師なしの物体検出装置のいずれからも検出できるため、教師なし・教師なしの検出入力の影響も調査した。
その結果,提案手法は異なる入力を持つ両方のデータセットで非常によく機能していることがわかった。
論文 参考訳(メタデータ) (2020-03-30T17:27:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。