論文の概要: Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning
- arxiv url: http://arxiv.org/abs/2212.08610v1
- Date: Fri, 16 Dec 2022 17:39:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 15:38:36.779685
- Title: Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning
- Title(参考訳): huruf:ディープラーニングを用いたアラビア語手書き文字認識への応用
- Authors: Minhaz Kamal, Fairuz Shaiara, Chowdhury Mohammad Abdullah, Sabbir
Ahmed, Tasnim Ahmed, and Md. Hasanul Kabir
- Abstract要約: 本稿では、アラビア語の文字と数字を認識するための軽量な畳み込みニューラルネットワークアーキテクチャを提案する。
提案したパイプラインは、畳み込み、プール、バッチ正規化、ドロップアウト、最後にグローバル平均レイヤの4つのレイヤを含む合計18層で構成されている。
提案したモデルはそれぞれ96.93%と99.35%の精度を達成し、これは最先端のエンドレベルアプリケーションに適した解決策となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handwriting Recognition has been a field of great interest in the Artificial
Intelligence domain. Due to its broad use cases in real life, research has been
conducted widely on it. Prominent work has been done in this field focusing
mainly on Latin characters. However, the domain of Arabic handwritten character
recognition is still relatively unexplored. The inherent cursive nature of the
Arabic characters and variations in writing styles across individuals makes the
task even more challenging. We identified some probable reasons behind this and
proposed a lightweight Convolutional Neural Network-based architecture for
recognizing Arabic characters and digits. The proposed pipeline consists of a
total of 18 layers containing four layers each for convolution, pooling, batch
normalization, dropout, and finally one Global average pooling and a Dense
layer. Furthermore, we thoroughly investigated the different choices of
hyperparameters such as the choice of the optimizer, kernel initializer,
activation function, etc. Evaluating the proposed architecture on the publicly
available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic
handwritten digits Database (MadBase)' datasets, the proposed model
respectively achieved an accuracy of 96.93% and 99.35% which is comparable to
the state-of-the-art and makes it a suitable solution for real-life end-level
applications.
- Abstract(参考訳): 手書き認識は人工知能分野において大きな関心を集めている分野である。
実生活で広く使われているため、研究が盛んに行われている。
この分野では、主にラテン文字に焦点をあてた作品が有名である。
しかし、アラビア文字認識の領域はまだ比較的未解明である。
アラビア語の文字の固有の呪文的性質と個人間の書き方の変化は、タスクをさらに難しくする。
そこで我々は,アラビア語の文字と数字を認識するための軽量な畳み込みニューラルネットワークアーキテクチャを提案する。
提案したパイプラインは、畳み込み、プール、バッチ正規化、ドロップアウト、最後にグローバル平均プールとDenseレイヤの4つのレイヤを含む合計18層で構成されている。
さらに,オプティマイザの選択,カーネルの初期化,アクティベーション機能など,ハイパーパラメータの異なる選択を徹底的に検討した。
一般に公開されている「アラビア手書き文字データセット(AHCD)」と「修正アラビア手書き文字データベース(MadBase)」のデータセットに基づいて提案されたアーキテクチャを評価し、提案したモデルはそれぞれ96.93%と99.35%の精度を達成し、これは最先端のエンドレベルアプリケーションに適している。
関連論文リスト
- AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
本稿では,アラビア語のテキストによる事前学習,ネイティブなアラビア語命令を利用したSFT(Supervised Fine-Tuning),アラビア語のGPT-4応答を含む総合的なソリューションを提案する。
目標は、文化的に認知され、価値に整合したアラビア語のLLMを、多様で応用特有のアラビア語コミュニティのニーズに適応させることである。
論文 参考訳(メタデータ) (2023-09-21T13:20:13Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Beyond Arabic: Software for Perso-Arabic Script Manipulation [67.31374614549237]
ペルソ・アラビア文字を使用する言語の書き起こしシステムを操作するための有限状態トランスデューサ(FST)コンポーネントとそれに対応するユーティリティのセットを提供する。
ライブラリはまた、単純なFSTベースのロマン化と文字変換も提供する。
論文 参考訳(メタデータ) (2023-01-26T20:37:03Z) - Handwritten Arabic Character Recognition for Children Writ-ing Using
Convolutional Neural Network and Stroke Identification [0.0]
本稿では,ヒジャデータセット上での91%の精度で幼児の手書き認識を行う畳み込みニューラルネットワーク(CNN)モデルを提案する。
キャラクタ内のストローク数に基づいた単一モデルではなく,マルチモデルを用いた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-03T19:48:11Z) - Graphemic Normalization of the Perso-Arabic Script [47.429213930688086]
本稿では,ペルソ・アラビア語が最良文書言語を超えて提示する課題について述べる。
自然言語処理(NLP)の状況に注目する。
ペルソ・アラビア文字ディアスポラの多言語語族8言語に対する正規化が機械翻訳および統計言語モデリングタスクに及ぼす影響を評価する。
論文 参考訳(メタデータ) (2022-10-21T21:59:44Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
本稿では、深層学習技術を用いてクルド語アルファベットの文字を認識可能なモデルの設計と開発を試みる。
4000万枚以上の画像を含む、手書きのクルド文字のための包括的なデータセットが作成された。
結果,精度は96%,トレーニング精度は97%であった。
論文 参考訳(メタデータ) (2022-10-18T16:48:28Z) - Comprehensive Benchmark Datasets for Amharic Scene Text Detection and
Recognition [56.048783994698425]
Ethiopic/Amharicスクリプトはアフリカ最古の書記システムの一つで、東アフリカで少なくとも23の言語に対応している。
アムハラ語の表記体系である Abugida は282音節、15句の句読点、20の数字を持つ。
HUST-ART, HUST-AST, ABE, Tana という,自然界におけるアムハラ文字の検出と認識のための総合的な公開データセットを提示した。
論文 参考訳(メタデータ) (2022-03-23T03:19:35Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - Arabic Handwritten Character Recognition based on Convolution Neural
Networks and Support Vector Machine [0.0]
本稿では,ディープ畳み込みニューラルネットワーク(DCNN)とサポートベクタマシン(SVM)を用いたアラビア文字と文字の認識アルゴリズムを提案する。
本稿では,入力テンプレートと事前記憶テンプレートとの類似性を決定することで,アラビア文字認識の問題に対処する。
本研究は,提案アルゴリズムが入力された手書きアラビア語文字を認識し,識別し,検証する能力を示すものである。
論文 参考訳(メタデータ) (2020-09-28T16:18:52Z) - A Hybrid Deep Learning Model for Arabic Text Recognition [2.064612766965483]
本稿では,複数のフォントタイプを用いて印刷されたアラビア文字を認識可能なモデルを提案する。
提案モデルでは,文字セグメンテーションを必要とせずにアラビア文字を認識可能なハイブリッドDLネットワークを採用している。
このモデルは文字と単語の認識において良好な結果が得られ、また、未知のデータでテストされた文字の認識においても有望な結果が得られた。
論文 参考訳(メタデータ) (2020-09-04T02:49:17Z) - Neural Computing for Online Arabic Handwriting Character Recognition
using Hard Stroke Features Mining [0.0]
オンラインアラビア文字認識における書字ストローク特徴の垂直方向と水平方向から所望の臨界点を検出する方法を提案する。
バックプロパゲーション学習アルゴリズムと修正シグモイド関数に基づくアクティベーション関数を備えた多層パーセプトロンを用いて、文字の分類のためにこれらのトークンから最小の特徴セットを抽出する。
提案手法は,文字認識技術に匹敵する98.6%の平均精度を実現する。
論文 参考訳(メタデータ) (2020-05-02T23:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。