論文の概要: Arabic Handwritten Character Recognition based on Convolution Neural
Networks and Support Vector Machine
- arxiv url: http://arxiv.org/abs/2009.13450v1
- Date: Mon, 28 Sep 2020 16:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 22:17:42.047771
- Title: Arabic Handwritten Character Recognition based on Convolution Neural
Networks and Support Vector Machine
- Title(参考訳): 畳み込みニューラルネットワークとサポートベクターマシンを用いたアラビア語手書き文字認識
- Authors: Mahmoud Shams, Amira. A. Elsonbaty, Wael. Z. ElSawy
- Abstract要約: 本稿では,ディープ畳み込みニューラルネットワーク(DCNN)とサポートベクタマシン(SVM)を用いたアラビア文字と文字の認識アルゴリズムを提案する。
本稿では,入力テンプレートと事前記憶テンプレートとの類似性を決定することで,アラビア文字認識の問題に対処する。
本研究は,提案アルゴリズムが入力された手書きアラビア語文字を認識し,識別し,検証する能力を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognition of Arabic characters is essential for natural language processing
and computer vision fields. The need to recognize and classify the handwritten
Arabic letters and characters are essentially required. In this paper, we
present an algorithm for recognizing Arabic letters and characters based on
using deep convolution neural networks (DCNN) and support vector machine (SVM).
This paper addresses the problem of recognizing the Arabic handwritten
characters by determining the similarity between the input templates and the
pre-stored templates using both fully connected DCNN and dropout SVM.
Furthermore, this paper determines the correct classification rate (CRR)
depends on the accuracy of the corrected classified templates, of the
recognized handwritten Arabic characters. Moreover, we determine the error
classification rate (ECR). The experimental results of this work indicate the
ability of the proposed algorithm to recognize, identify, and verify the input
handwritten Arabic characters. Furthermore, the proposed system determines
similar Arabic characters using a clustering algorithm based on the K-means
clustering approach to handle the problem of multi-stroke in Arabic characters.
The comparative evaluation is stated and the system accuracy reached 95.07% CRR
with 4.93% ECR compared with the state of the art.
- Abstract(参考訳): アラビア文字の認識は自然言語処理やコンピュータビジョン分野において不可欠である。
手書きのアラビア語の文字や文字を認識し分類する必要性は基本的に必要である。
本稿では,deep convolution neural networks (dcnn) と support vector machine (svm) を用いて,アラビア語文字と文字を認識するアルゴリズムを提案する。
本稿では,完全連結DCNNとドロップアウトSVMの両方を用いて,入力テンプレートとプレストアテンプレートの類似性を決定することで,アラビア文字の認識の問題に対処する。
さらに,手書き文字の正しい分類率 (CRR) は,認識されたアラビア文字の補正された分類テンプレートの精度に依存する。
さらに,誤差分類率(ECR)を決定する。
本研究の実験的成果は,入力された手書きアラビア語文字を認識し,識別し,検証するアルゴリズムの能力を示している。
さらに,K-meansクラスタリング手法に基づくクラスタリングアルゴリズムを用いて類似のアラビア文字を判定し,アラビア文字のマルチストローク問題に対処する。
比較評価は述べられ、システム精度は95.07% CRR、ECRは4.93%に達した。
関連論文リスト
- C-LLM: Learn to Check Chinese Spelling Errors Character by Character [61.53865964535705]
本稿では,C-LLMを提案する。C-LLMは,文字による誤り文字のチェックを学習する中国語のスペルチェック手法である。
C-LLMは既存の方法よりも平均10%改善する。
論文 参考訳(メタデータ) (2024-06-24T11:16:31Z) - Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through
Image-IDS Aligning [61.34060587461462]
中国語テキスト認識(CTR)のための2段階フレームワークを提案する。
印刷文字画像とIdeographic Description Sequences (IDS) の整列によるCLIP様モデルの事前学習を行う。
この事前学習段階は、漢字を認識する人間をシミュレートし、各文字の標準表現を得る。
学習された表現はCTRモデルを監督するために使用され、従来の単一文字認識はテキストライン認識に改善される。
論文 参考訳(メタデータ) (2023-09-03T05:33:16Z) - Context Perception Parallel Decoder for Scene Text Recognition [52.620841341333524]
シーンテキスト認識手法は高い精度と高速な推論速度を達成するのに苦労している。
本稿では、STRにおけるARデコーディングの実証的研究を行い、ARデコーダが言語文脈をモデル化するだけでなく、視覚的文脈知覚のガイダンスも提供することを明らかにする。
我々は一連のCPPDモデルを構築し、提案したモジュールを既存のSTRデコーダにプラグインする。英語と中国語のベンチマーク実験により、CPPDモデルはARベースモデルよりも約8倍高速に動作し、高い競争精度を達成できることを示した。
論文 参考訳(メタデータ) (2023-07-23T09:04:13Z) - Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning [0.0]
本稿では、アラビア語の文字と数字を認識するための軽量な畳み込みニューラルネットワークアーキテクチャを提案する。
提案したパイプラインは、畳み込み、プール、バッチ正規化、ドロップアウト、最後にグローバル平均レイヤの4つのレイヤを含む合計18層で構成されている。
提案したモデルはそれぞれ96.93%と99.35%の精度を達成し、これは最先端のエンドレベルアプリケーションに適した解決策となった。
論文 参考訳(メタデータ) (2022-12-16T17:39:32Z) - Siamese based Neural Network for Offline Writer Identification on word
level data [7.747239584541488]
入力語画像に基づいて文書の著者を特定する新しい手法を提案する。
本手法はテキスト独立であり,入力画像のサイズに制約を課さない。
論文 参考訳(メタデータ) (2022-11-17T10:01:46Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
本稿では、深層学習技術を用いてクルド語アルファベットの文字を認識可能なモデルの設計と開発を試みる。
4000万枚以上の画像を含む、手書きのクルド文字のための包括的なデータセットが作成された。
結果,精度は96%,トレーニング精度は97%であった。
論文 参考訳(メタデータ) (2022-10-18T16:48:28Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - An Efficient Language-Independent Multi-Font OCR for Arabic Script [0.0]
本稿では,アラビア文字のスキャン画像を入力として取り出し,対応するデジタル文書を生成する完全アラビアOCRシステムを提案する。
また,現在最先端のセグメンテーションアルゴリズムよりも優れたフォント非依存文字アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-18T22:57:03Z) - Neural Computing for Online Arabic Handwriting Character Recognition
using Hard Stroke Features Mining [0.0]
オンラインアラビア文字認識における書字ストローク特徴の垂直方向と水平方向から所望の臨界点を検出する方法を提案する。
バックプロパゲーション学習アルゴリズムと修正シグモイド関数に基づくアクティベーション関数を備えた多層パーセプトロンを用いて、文字の分類のためにこれらのトークンから最小の特徴セットを抽出する。
提案手法は,文字認識技術に匹敵する98.6%の平均精度を実現する。
論文 参考訳(メタデータ) (2020-05-02T23:17:08Z) - Separating Content from Style Using Adversarial Learning for Recognizing
Text in the Wild [103.51604161298512]
画像中の複数の文字の生成と認識のための逆学習フレームワークを提案する。
我々のフレームワークは、新しい最先端の認識精度を達成するために、最近の認識手法に統合することができる。
論文 参考訳(メタデータ) (2020-01-13T12:41:42Z) - TextScanner: Reading Characters in Order for Robust Scene Text
Recognition [60.04267660533966]
TextScannerはシーンテキスト認識の代替手法である。
文字クラス、位置、順序に対する画素単位のマルチチャネルセグメンテーションマップを生成する。
また、コンテキストモデリングにRNNを採用し、文字の位置とクラスを並列で予測する。
論文 参考訳(メタデータ) (2019-12-28T07:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。