論文の概要: Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data
- arxiv url: http://arxiv.org/abs/2212.08660v1
- Date: Thu, 15 Dec 2022 19:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 15:44:53.180217
- Title: Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data
- Title(参考訳): 歴史的洪水保険債権と極端降雨データから年次洪水損失リスクモデルを学ぶ
- Authors: Joaquin Salas and Anamitra Saha and Sai Ravela
- Abstract要約: 洪水は最も壊滅的な自然災害の1つであり、実質的な経済的損失の原因となっている。
本研究は,国立洪水保険プログラムデータセット上に構築されたレジストレーターの予測能力を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flooding is one of the most disastrous natural hazards, responsible for
substantial economic losses. A predictive model for flood-induced financial
damages is useful for many applications such as climate change adaptation
planning and insurance underwriting. This research assesses the predictive
capability of regressors constructed on the National Flood Insurance Program
(NFIP) dataset using neural networks (Conditional Generative Adversarial
Networks), decision trees (Extreme Gradient Boosting), and kernel-based
regressors (Gaussian Process). The assessment highlights the most informative
predictors for regression. The distribution for claims amount inference is
modeled with a Burr distribution permitting the introduction of a bias
correction scheme and increasing the regressor's predictive capability. Aiming
to study the interaction with physical variables, we incorporate Daymet
rainfall estimation to NFIP as an additional predictor. A study on the coastal
counties in the eight US South-West states resulted in an $R^2=0.807$. Further
analysis of 11 counties with a significant number of claims in the NFIP dataset
reveals that Extreme Gradient Boosting provides the best results, that bias
correction significantly improves the similarity with the reference
distribution, and that the rainfall predictor strengthens the regressor
performance.
- Abstract(参考訳): 洪水は最も悲惨な自然災害の1つであり、実質的な経済損失の原因となっている。
洪水による金融被害の予測モデルは、気候変動適応計画や保険引受など多くの応用に有用である。
本研究では、ニューラルネットワーク(Conditional Generative Adversarial Networks)、決定木(Extreme Gradient Boosting)、カーネルベースの回帰器(Gaussian Process)を用いて、NFIPデータセット上に構築された回帰器の予測能力を評価する。
この評価は回帰の最も有益な予測要因を浮き彫りにする。
クレーム量推論の分布は、バイアス補正スキームの導入と回帰器の予測能力の向上を可能にするバー分布でモデル化される。
物理変数との相互作用を研究するため,NFIPにデイメット降雨推定を付加予測器として組み込んだ。
アメリカ南西部8州の海岸郡に関する調査の結果、R^2=0.807$が得られた。
NFIPデータセットにかなりの数のクレームがある11郡のさらなる分析では、極勾配ブースティングが最良の結果をもたらし、バイアス補正が基準分布との類似性を著しく改善し、降雨予測器が回帰器の性能を高めることが示されている。
関連論文リスト
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - A comparison of machine learning surrogate models of street-scale
flooding in Norfolk, Virginia [0.0]
バージニア州ノーフォークを例に挙げた低地の海岸都市は、降雨と潮によって引き起こされる道路洪水の課題に直面している。
高忠実で物理に基づくシミュレーションは、都市多重洪水の正確な予測を提供するが、その計算複雑性はリアルタイムアプリケーションには適さない。
本研究では,ランダムフォレストアルゴリズムに基づく代理モデルと,Long Short-Term Memory (LSTM) と Gated Recurrent Unit (GRU) の2つのディープラーニングモデルを比較した。
論文 参考訳(メタデータ) (2023-07-26T13:24:01Z) - Predicting Hurricane Evacuation Decisions with Interpretable Machine
Learning Models [0.0]
本研究では,容易にアクセス可能な人口動態と資源関連予測器によって構築された世帯の避難決定を予測するための新しい手法を提案する。
提案手法は,避難交通需要の推計を改善するため,緊急管理当局に新たなツールと枠組みを提供する可能性がある。
論文 参考訳(メタデータ) (2023-03-12T03:45:44Z) - Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk [0.0]
本稿では,ニューラルネットワークと極値理論を組み合わせたEQRNモデルを提案する。
本研究では,スイス・アーレ流域の洪水リスク予測に本手法を適用した。
論文 参考訳(メタデータ) (2022-08-16T08:02:49Z) - Flood Prediction Using Machine Learning Models [0.0]
本稿では,異なる機械学習モデルを用いて洪水の予測を行うことにより,この自然災害の極端なリスクを低減することを目的とする。
その結果、どのモデルがより正確な結果をもたらすかを理解するために比較分析を行う。
論文 参考訳(メタデータ) (2022-08-02T03:59:43Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - Predicting Road Flooding Risk with Machine Learning Approaches Using
Crowdsourced Reports and Fine-grained Traffic Data [1.0554048699217669]
本研究の目的は,機械学習モデルを用いて地形,水文,時間的降水特性に基づいて,道路浸水リスクを予測することである。
ハリケーン・ハービーの発見は、降水が道路の浸水感受性を予測する上で最も重要な特徴であることを示している。
本研究は,道路レベルでの予測的洪水リスクマッピングの観点から,スマートフラッドレジリエンスの新たな分野を推し進めるものである。
論文 参考訳(メタデータ) (2021-08-30T14:25:58Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
トレーニングネットワークの一般化能力を評価するための新しいフレームワークを提案する。
具体的には,一般化ギャップを正確に予測するための2つの新しい尺度を提案する。
PGDL(Predicting Generalization in Deep Learning)のNeurIPS 2020コンペティションにおけるタスクの大部分について、現在の最先端の指標よりも優れた予測スコアを得る。
論文 参考訳(メタデータ) (2021-06-09T01:37:36Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。