Leveraging Wastewater Monitoring for COVID-19 Forecasting in the US: a
Deep Learning study
- URL: http://arxiv.org/abs/2212.08798v1
- Date: Sat, 17 Dec 2022 04:57:44 GMT
- Title: Leveraging Wastewater Monitoring for COVID-19 Forecasting in the US: a
Deep Learning study
- Authors: Mehrdad Fazli, Heman Shakeri
- Abstract summary: The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives.
Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting.
This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data.
- Score: 0.7832189413179361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The outburst of COVID-19 in late 2019 was the start of a health crisis that
shook the world and took millions of lives in the ensuing years. Many
governments and health officials failed to arrest the rapid circulation of
infection in their communities. The long incubation period and the large
proportion of asymptomatic cases made COVID-19 particularly elusive to track.
However, wastewater monitoring soon became a promising data source in addition
to conventional indicators such as confirmed daily cases, hospitalizations, and
deaths. Despite the consensus on the effectiveness of wastewater viral load
data, there is a lack of methodological approaches that leverage viral load to
improve COVID-19 forecasting. This paper proposes using deep learning to
automatically discover the relationship between daily confirmed cases and viral
load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and
one Temporal Fusion Transformer (TFT) model to build a global forecasting
model. We supplement the daily confirmed cases with viral loads and other
socio-economic factors as covariates to the models. Our results suggest that
TFT outperforms DeepTCN and learns a better association between viral load and
daily cases. We demonstrated that equipping the models with the viral load
improves their forecasting performance significantly. Moreover, viral load is
shown to be the second most predictive input, following the containment and
health index. Our results reveal the feasibility of training a
location-agnostic deep-learning model to capture the dynamics of infection
diffusion when wastewater viral load data is provided.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
We present COVID-LSTM, a data-driven model based on a Long Short-term memory architecture for forecasting COVID-19 incidence at the county-level in the US.
We use the weekly number of new cases as temporal input, and hand-engineered spatial features from Facebook to capture the spread of the disease in time and space.
Over the 4-week forecast horizon, our model is on average 50 cases per county more accurate than the COVIDhub-ensemble.
arXiv Detail & Related papers (2021-09-24T17:40:08Z) - Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data [66.70036251870988]
The Centers for Disease Control and Prevention (CDC) has worked with other federal agencies to identify counties with increasing coronavirus 2019 (CO-19) incidence (hotspots)
This paper presents a sparse model for early detection of COVID-19 hotspots (at the county level) in the United States.
Deep neural networks are introduced to enhance the model's representative power while still enjoying the interpretability of the kernel.
arXiv Detail & Related papers (2021-05-31T19:28:17Z) - COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction [29.919578191688274]
This paper proposes a method named COURAGE to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States.
Our model fully utilizes publicly available information of COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level prediction as an aggregation of the corresponding county-level predictions.
arXiv Detail & Related papers (2021-05-03T04:00:59Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
arXiv Detail & Related papers (2021-01-28T09:19:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
arXiv Detail & Related papers (2020-10-27T17:52:02Z) - Semi-supervised Neural Networks solve an inverse problem for modeling
Covid-19 spread [61.9008166652035]
We study the spread of COVID-19 using a semi-supervised neural network.
We assume a passive part of the population remains isolated from the virus dynamics.
arXiv Detail & Related papers (2020-10-10T19:33:53Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.