Deep learning via LSTM models for COVID-19 infection forecasting in
India
- URL: http://arxiv.org/abs/2101.11881v1
- Date: Thu, 28 Jan 2021 09:19:10 GMT
- Title: Deep learning via LSTM models for COVID-19 infection forecasting in
India
- Authors: Rohitash Chandra, Ayush Jain, Divyanshu Singh Chauhan
- Abstract summary: Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
- Score: 13.163271874039191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have entered an era of a pandemic that has shaken the world with major
impact to medical systems, economics and agriculture. Prominent computational
and mathematical models have been unreliable due to the complexity of the
spread of infections. Moreover, lack of data collection and reporting makes any
such modelling attempts unreliable. Hence we need to re-look at the situation
with the latest data sources and most comprehensive forecasting models. Deep
learning models such as recurrent neural networks are well suited for modelling
temporal sequences. In this paper, prominent recurrent neural networks, in
particular \textit{long short term memory} (LSTMs) networks, bidirectional
LSTM, and encoder-decoder LSTM models for multi-step (short-term) forecasting
the spread of COVID-infections among selected states in India. We select states
with COVID-19 hotpots in terms of the rate of infections and compare with
states where infections have been contained or reached their peak and provide
two months ahead forecast that shows that cases will slowly decline. Our
results show that long-term forecasts are promising which motivates the
application of the method in other countries or areas. We note that although we
made some progress in forecasting, the challenges in modelling remain due to
data and difficulty in capturing factors such as population density, travel
logistics, and social aspects such culture and lifestyle.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics [4.254099382808598]
We develop an integrated recurrent neural network and nonlinear regression model for disease-borne disease evolution.
We take into account climate data seasonality and as external factors that correlate with insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest.
The integrated model is trained by neuraltemporal descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred.
arXiv Detail & Related papers (2022-01-23T23:04:58Z) - Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in
India [1.7969777786551424]
Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread.
We designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED-LSTM, Bi-LSTM, CNN, and hybrid CNN+LSTM model.
The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models.
arXiv Detail & Related papers (2021-08-31T13:28:51Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
arXiv Detail & Related papers (2021-02-03T11:54:24Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z) - Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement [1.8899300124593645]
We adapt the state and county level model, TDEFSI-LONLY, to national and county level COVID-19 data.
We show that this model poorly forecasts the current pandemic.
We propose an alternate forecast model, it County Level Epidemiological Inference Recurrent Network (alg) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern.
arXiv Detail & Related papers (2020-06-16T17:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.