AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation
- URL: http://arxiv.org/abs/2212.08841v4
- Date: Wed, 30 Oct 2024 02:36:38 GMT
- Title: AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation
- Authors: Rui Meng, Ye Liu, Semih Yavuz, Divyansh Agarwal, Lifu Tu, Ning Yu, Jianguo Zhang, Meghana Bhat, Yingbo Zhou,
- Abstract summary: We propose two approaches that enable annotation-free and scalable training by creating pseudo querydocument pairs.
The query extraction method involves selecting salient spans from the original document to generate pseudo queries.
The transferred query generation method utilizes generation models trained for other NLP tasks, such as summarization, to produce pseudo queries.
- Score: 44.93777271276723
- License:
- Abstract: Dense retrievers have made significant strides in text retrieval and open-domain question answering. However, most of these achievements have relied heavily on extensive human-annotated supervision. In this study, we aim to develop unsupervised methods for improving dense retrieval models. We propose two approaches that enable annotation-free and scalable training by creating pseudo querydocument pairs: query extraction and transferred query generation. The query extraction method involves selecting salient spans from the original document to generate pseudo queries. On the other hand, the transferred query generation method utilizes generation models trained for other NLP tasks, such as summarization, to produce pseudo queries. Through extensive experimentation, we demonstrate that models trained using these augmentation methods can achieve comparable, if not better, performance than multiple strong dense baselines. Moreover, combining these strategies leads to further improvements, resulting in superior performance of unsupervised dense retrieval, unsupervised domain adaptation and supervised finetuning, benchmarked on both BEIR and ODQA datasets. Code and datasets are publicly available at https://github.com/salesforce/AugTriever.
Related papers
- Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - Revisiting Sparse Retrieval for Few-shot Entity Linking [33.15662306409253]
We propose an ELECTRA-based keyword extractor to denoise the mention context and construct a better query expression.
For training the extractor, we propose a distant supervision method to automatically generate training data based on overlapping tokens between mention contexts and entity descriptions.
Experimental results on the ZESHEL dataset demonstrate that the proposed method outperforms state-of-the-art models by a significant margin across all test domains.
arXiv Detail & Related papers (2023-10-19T03:51:10Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
The proposed method first generates pseudo- documents by few-shot prompting large language models (LLMs)
query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets.
Our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
arXiv Detail & Related papers (2023-03-14T07:27:30Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
We propose a novel approach which effectively integrates text generation models into PRF-based query expansion.
Our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback.
We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets.
arXiv Detail & Related papers (2021-08-13T01:09:02Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.