Reinforced Information Retrieval
- URL: http://arxiv.org/abs/2502.11562v1
- Date: Mon, 17 Feb 2025 08:52:39 GMT
- Title: Reinforced Information Retrieval
- Authors: Chaofan Li, Zheng Liu, Jianlyv Chen, Defu Lian, Yingxia Shao,
- Abstract summary: We present textbfReinforced-IR, a novel approach that jointly adapts a pre-trained retriever and generator for precise cross-domain retrieval.
A key innovation of Reinforced-IR is its textbfSelf-Boosting framework, which enables retriever and generator to learn from each other's feedback.
In our experiment, Reinforced-IR outperforms existing domain adaptation methods by a large margin, leading to substantial improvements in retrieval quality across a wide range of application scenarios.
- Score: 35.0424269986952
- License:
- Abstract: While retrieval techniques are widely used in practice, they still face significant challenges in cross-domain scenarios. Recently, generation-augmented methods have emerged as a promising solution to this problem. These methods enhance raw queries by incorporating additional information from an LLM-based generator, facilitating more direct retrieval of relevant documents. However, existing methods struggle with highly specialized situations that require extensive domain expertise. To address this problem, we present \textbf{Reinforced-IR}, a novel approach that jointly adapts a pre-trained retriever and generator for precise cross-domain retrieval. A key innovation of Reinforced-IR is its \textbf{Self-Boosting} framework, which enables retriever and generator to learn from each other's feedback. Specifically, the generator is reinforced to generate query augmentations that enhance the retriever's performance, while the retriever is trained to better discriminate the relevant documents identified by the generator. This iterative process allows the end-to-end retrieval performance to be progressively optimized using an unlabeled corpus from the target domain. In our experiment, Reinforced-IR outperforms existing domain adaptation methods by a large margin, leading to substantial improvements in retrieval quality across a wide range of application scenarios.
Related papers
- Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation [21.764973680014368]
RetroLLM is a unified framework that integrates retrieval and generation into a single, cohesive process.
To mitigate false pruning in the process of constrained evidence generation, we introduce hierarchical FM-Index constraints.
Experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks.
arXiv Detail & Related papers (2024-12-16T16:03:25Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
We propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively.
We show that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10.
arXiv Detail & Related papers (2024-09-17T05:59:32Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - ReFIT: Relevance Feedback from a Reranker during Inference [109.33278799999582]
Retrieve-and-rerank is a prevalent framework in neural information retrieval.
We propose to leverage the reranker to improve recall by making it provide relevance feedback to the retriever at inference time.
arXiv Detail & Related papers (2023-05-19T15:30:33Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
We propose two approaches that enable annotation-free and scalable training by creating pseudo querydocument pairs.
The query extraction method involves selecting salient spans from the original document to generate pseudo queries.
The transferred query generation method utilizes generation models trained for other NLP tasks, such as summarization, to produce pseudo queries.
arXiv Detail & Related papers (2022-12-17T10:43:25Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
We propose a novel approach which effectively integrates text generation models into PRF-based query expansion.
Our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback.
We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets.
arXiv Detail & Related papers (2021-08-13T01:09:02Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.