Generation-Augmented Retrieval for Open-domain Question Answering
- URL: http://arxiv.org/abs/2009.08553v4
- Date: Fri, 6 Aug 2021 20:35:50 GMT
- Title: Generation-Augmented Retrieval for Open-domain Question Answering
- Authors: Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao,
Jiawei Han, Weizhu Chen
- Abstract summary: Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
- Score: 134.27768711201202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Generation-Augmented Retrieval (GAR) for answering open-domain
questions, which augments a query through text generation of heuristically
discovered relevant contexts without external resources as supervision. We
demonstrate that the generated contexts substantially enrich the semantics of
the queries and GAR with sparse representations (BM25) achieves comparable or
better performance than state-of-the-art dense retrieval methods such as DPR.
We show that generating diverse contexts for a query is beneficial as fusing
their results consistently yields better retrieval accuracy. Moreover, as
sparse and dense representations are often complementary, GAR can be easily
combined with DPR to achieve even better performance. GAR achieves
state-of-the-art performance on Natural Questions and TriviaQA datasets under
the extractive QA setup when equipped with an extractive reader, and
consistently outperforms other retrieval methods when the same generative
reader is used.
Related papers
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Enhancing Retrieval in QA Systems with Derived Feature Association [0.0]
Retrieval augmented generation (RAG) has become the standard in long context question answering (QA) systems.
We propose a novel extension to RAG systems, which we call Retrieval from AI Derived Documents (RAIDD)
arXiv Detail & Related papers (2024-10-02T05:24:49Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAG has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA)
We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query.
A two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers.
arXiv Detail & Related papers (2024-06-11T15:15:33Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - Revisiting Sparse Retrieval for Few-shot Entity Linking [33.15662306409253]
We propose an ELECTRA-based keyword extractor to denoise the mention context and construct a better query expression.
For training the extractor, we propose a distant supervision method to automatically generate training data based on overlapping tokens between mention contexts and entity descriptions.
Experimental results on the ZESHEL dataset demonstrate that the proposed method outperforms state-of-the-art models by a significant margin across all test domains.
arXiv Detail & Related papers (2023-10-19T03:51:10Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.