Hidden State Approximation in Recurrent Neural Networks Using Continuous
Particle Filtering
- URL: http://arxiv.org/abs/2212.09008v1
- Date: Sun, 18 Dec 2022 04:31:45 GMT
- Title: Hidden State Approximation in Recurrent Neural Networks Using Continuous
Particle Filtering
- Authors: Dexun Li
- Abstract summary: Using historical data to predict future events has many applications in the real world, such as stock price prediction; the robot localization.
In this paper, we use the particles to approximate the distribution of the latent state and show how it can extend into a more complex form.
With the proposed continuous differentiable scheme, our model is capable of adaptively extracting valuable information and updating the latent state according to the Bayes rule.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using historical data to predict future events has many applications in the
real world, such as stock price prediction; the robot localization. In the past
decades, the Convolutional long short-term memory (LSTM) networks have achieved
extraordinary success with sequential data in the related field. However,
traditional recurrent neural networks (RNNs) keep the hidden states in a
deterministic way. In this paper, we use the particles to approximate the
distribution of the latent state and show how it can extend into a more complex
form, i.e., the Encoder-Decoder mechanism. With the proposed continuous
differentiable scheme, our model is capable of adaptively extracting valuable
information and updating the latent state according to the Bayes rule. Our
empirical studies demonstrate the effectiveness of our method in the prediction
tasks.
Related papers
- Temporal Convolution Derived Multi-Layered Reservoir Computing [5.261277318790788]
We propose a new mapping of input data into the reservoir's state space.
We incorporate this method in two novel network architectures increasing parallelizability, depth and predictive capabilities of the neural network.
For the chaotic time series, we observe an error reduction of up to $85.45%$ compared to Echo State Networks and $90.72%$ compared to Gated Recurrent Units.
arXiv Detail & Related papers (2024-07-09T11:40:46Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
We propose a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction.
GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction.
We show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties.
arXiv Detail & Related papers (2024-04-09T05:51:40Z) - State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
We propose State Sequences Prediction via Fourier Transform (SPF), a novel method for learning expressive representations efficiently.
We theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity.
Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.
arXiv Detail & Related papers (2023-10-24T14:47:02Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Autoregressive GNN-ODE GRU Model for Network Dynamics [7.272158647379444]
We propose an Autoregressive GNN-ODE GRU Model (AGOG) to learn and capture the continuous network dynamics.
Our model can capture the continuous dynamic process of complex systems accurately and make predictions of node states with minimal error.
arXiv Detail & Related papers (2022-11-19T05:43:10Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Recurrent Neural Networks for Learning Long-term Temporal Dependencies
with Reanalysis of Time Scale Representation [16.32068729107421]
We argue that the interpretation of a forget gate as a temporal representation is valid when the gradient of loss with respect to the state decreases exponentially as time goes back.
We propose an approach to construct new RNNs that can represent a longer time scale than conventional models.
arXiv Detail & Related papers (2021-11-05T06:22:58Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
A neural network computing framework, i.N.N., was developed to efficiently and accurately render a multistep-ahead prediction of a time series.
The framework has great potential in practical applications in artificial intelligence (AI) or machine learning fields.
arXiv Detail & Related papers (2021-07-03T06:20:43Z) - DSDNet: Deep Structured self-Driving Network [92.9456652486422]
We propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network.
We develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions.
arXiv Detail & Related papers (2020-08-13T17:54:06Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.