GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction
- URL: http://arxiv.org/abs/2404.08004v1
- Date: Tue, 9 Apr 2024 05:51:40 GMT
- Title: GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction
- Authors: Yuhao Luo, Kehua Chen, Meixin Zhu,
- Abstract summary: We propose a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction.
GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction.
We show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties.
- Score: 3.031375888004876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a vital component in autonomous driving, accurate trajectory prediction effectively prevents traffic accidents and improves driving efficiency. To capture complex spatial-temporal dynamics and social interactions, recent studies developed models based on advanced deep-learning methods. On the other hand, recent studies have explored the use of deep generative models to further account for trajectory uncertainties. However, the current approaches demonstrating indeterminacy involve inefficient and time-consuming practices such as sampling from trained models. To fill this gap, we proposed a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction while efficiently quantifying prediction uncertainty. In particular, GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction. The encoder, including stacked Graph Attention Networks, LSTM and 1D convolutional layers, is employed to extract spatial-temporal relationships. The decoder is used to learn a latent distribution and thus quantify prediction uncertainty. To reveal the effectiveness of our model, we evaluate the performance of GRANP on the highD dataset. Extensive experiments show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties. Additionally, we undertake an intuitive case study that showcases the interpretability of the proposed approach. The code is available at https://github.com/joy-driven/GRANP.
Related papers
- Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
We propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA)
KIA captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space.
This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior.
arXiv Detail & Related papers (2023-09-19T03:42:55Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
We propose EquiDiff, a deep generative model for predicting future vehicle trajectories.
EquiDiff is based on the conditional diffusion model, which generates future trajectories by incorporating historical information and random Gaussian noise.
Our results demonstrate that EquiDiff outperforms other baseline models in short-term prediction, but has slightly higher errors for long-term prediction.
arXiv Detail & Related papers (2023-08-12T13:17:09Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - DeepTrack: Lightweight Deep Learning for Vehicle Path Prediction in
Highways [0.47248250311484113]
This article presents DeepTrack, a novel deep learning algorithm customized for real-time vehicle trajectory prediction in highways.
DeepTrack achieves comparable accuracy to state-of-the-art trajectory prediction models but with smaller model sizes and lower computational complexity.
arXiv Detail & Related papers (2021-08-01T17:33:04Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.