論文の概要: Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting
- arxiv url: http://arxiv.org/abs/2212.09030v1
- Date: Sun, 18 Dec 2022 07:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 14:16:04.513818
- Title: Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting
- Title(参考訳): 短時間負荷予測のための動的注意付き文脈拡張ES-dRNN
- Authors: Slawek Smyl, Grzegorz Dudek, Pawe{\l} Pe{\l}ka
- Abstract要約: 提案手法は,コンテキストトラックとメイントラックという,同時に訓練された2つのトラックから構成される。
RNNアーキテクチャは、階層的な拡張を積み重ねた複数の繰り返し層で構成され、最近提案された注意的再帰細胞を備えている。
このモデルは点予測と予測間隔の両方を生成する。
- 参考スコア(独自算出の注目度): 1.1602089225841632
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a new short-term load forecasting (STLF) model
based on contextually enhanced hybrid and hierarchical architecture combining
exponential smoothing (ES) and a recurrent neural network (RNN). The model is
composed of two simultaneously trained tracks: the context track and the main
track. The context track introduces additional information to the main track.
It is extracted from representative series and dynamically modulated to adjust
to the individual series forecasted by the main track. The RNN architecture
consists of multiple recurrent layers stacked with hierarchical dilations and
equipped with recently proposed attentive dilated recurrent cells. These cells
enable the model to capture short-term, long-term and seasonal dependencies
across time series as well as to weight dynamically the input information. The
model produces both point forecasts and predictive intervals. The experimental
part of the work performed on 35 forecasting problems shows that the proposed
model outperforms in terms of accuracy its predecessor as well as standard
statistical models and state-of-the-art machine learning models.
- Abstract(参考訳): 本稿では,指数的スムーシング(ES)とリカレントニューラルネットワーク(RNN)を組み合わせたコンテキスト拡張型ハイブリッドおよび階層型アーキテクチャに基づく,新しい短期負荷予測(STLF)モデルを提案する。
モデルは、コンテキストトラックとメイントラックの2つの同時に訓練されたトラックで構成されている。
コンテキストトラックは、メイントラックに追加情報を導入する。
代表的なシリーズから抽出され、メイントラックで予測される個々のシリーズに合わせて動的に変調される。
RNNアーキテクチャは、階層的拡張を積み重ねた複数の繰り返し層で構成され、最近提案された減衰性拡張型リカレントセルを備えている。
これらのセルは、時系列にわたって短期的、長期的、季節的な依存関係を捉え、入力情報を動的に重み付けすることができる。
このモデルは点予測と予測間隔の両方を生成する。
35の予測問題に対する実験の結果,提案モデルが従来の精度,標準統計モデル,最先端の機械学習モデルよりも優れていたことが示唆された。
関連論文リスト
- PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
本稿では,DG-SCT(Dual-Guided Space-Channel-Temporal)アテンション機構を提案する。
DG-SCTモジュールはトレーニング可能なクロスモーダル・インタラクション・レイヤを事前トレーニングされたオーディオ・ビジュアル・エンコーダに組み込む。
提案手法は, AVE, AVVP, AVS, AVQA, AVQAを含む複数のダウンストリームタスクにまたがる最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2023-11-09T05:24:20Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - ES-dRNN with Dynamic Attention for Short-Term Load Forecasting [1.1602089225841632]
短期負荷予測(STLF)は、時系列の複雑な性質が複数の季節性やばらつきを表わすため、難しい問題である。
本稿では,指数的スムース化と拡張型リカレントニューラルネットワーク(ES-dRNN)と動的注意機構を組み合わせたハイブリッド予測モデルの拡張を提案する。
論文 参考訳(メタデータ) (2022-03-02T08:39:33Z) - ES-dRNN: A Hybrid Exponential Smoothing and Dilated Recurrent Neural
Network Model for Short-Term Load Forecasting [1.4502611532302039]
複雑な時系列(TS)のため、短期負荷予測(STLF)は困難である
本稿では,複数の季節性を扱うハイブリッド階層型ディープラーニングモデルを提案する。
指数スムージング(ES)とリカレントニューラルネットワーク(RNN)を組み合わせる。
論文 参考訳(メタデータ) (2021-12-05T19:38:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
本稿では,産業応用における非定常力学系のモデル化に好適な指数的スムーズなリカレントニューラルネットワーク(RNN)のクラスを提案する。
指数スムーズなRNNの電力負荷、気象データ、株価予測への応用は、多段階時系列予測における隠れ状態の指数スムーズ化の有効性を強調している。
論文 参考訳(メタデータ) (2020-04-09T17:53:49Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。