Spontaneous symmetry breaking in non-steady modes of open quantum
many-body systems
- URL: http://arxiv.org/abs/2212.09327v2
- Date: Thu, 11 May 2023 03:18:00 GMT
- Title: Spontaneous symmetry breaking in non-steady modes of open quantum
many-body systems
- Authors: Taiki Haga
- Abstract summary: We consider spontaneous symmetry breaking in non-steady modes of an open quantum many-body system.
For a dissipative spin model, it is shown that the most coherent mode exhibits a transition from a disordered phase to a symmetry-broken ordered phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a quantum many-body system coupled to the environment, its steady state
can exhibit spontaneous symmetry breaking when a control parameter exceeds a
critical value. In this study, we consider spontaneous symmetry breaking in
non-steady modes of an open quantum many-body system. Assuming that the time
evolution of the density matrix of the system is described by a Markovian
master equation, the dynamics of the system is fully characterized by the
eigenmodes and spectrum of the corresponding time evolution superoperator.
Among the non-steady eigenmodes with finite lifetimes, we focus on the
eigenmodes with the highest frequency, which we call the most coherent mode.
For a dissipative spin model, it is shown that the most coherent mode exhibits
a transition from a disordered phase to a symmetry-broken ordered phase, even
if the steady state does not show singular behavior. We further argue that the
phase transition of the most coherent mode induces a qualitative change in the
decoherence dynamics of highly entangled states, i.e., the Schr\"odinger's cat
states.
Related papers
- Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - A Solvable Model for Discrete Time Crystal Enforced by Nonsymmorphic
Dynamical Symmetry [9.803965066368757]
We propose a class of discrete time crystals enforced by nonsymmorphic dynamical symmetry.
The exact solution of the time-dependent Schr"odinger equation shows that the system spontaneously exhibits a period extension.
We show that the subharmonic response is stable even when many-body interactions are introduced, indicating a DTC phase in the thermodynamic limit.
arXiv Detail & Related papers (2023-05-27T01:51:29Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Signatures of a quantum stabilized fluctuating phase and critical
dynamics in a kinetically-constrained open many-body system with two
absorbing states [0.0]
We introduce and investigate an open many-body quantum system in which kinetically coherent and dissipative processes compete.
Our work shows how the interplay between coherent and dissipative processes as well as constraints may lead to a highly intricate non-equilibrium evolution.
arXiv Detail & Related papers (2022-04-22T07:51:38Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.