Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift
- URL: http://arxiv.org/abs/2212.09409v3
- Date: Tue, 22 Apr 2025 13:00:37 GMT
- Title: Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift
- Authors: Dustin Wright, Isabelle Augenstein,
- Abstract summary: This paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting.<n>We propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks.
- Score: 43.69579155156202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.
Related papers
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
In supervised machine learning, models are typically trained using data with hard labels, i.e., definite assignments of class membership.
We investigate whether incorporating label uncertainty, represented as discrete probability distributions over the class labels, improves the predictive performance of classification models.
arXiv Detail & Related papers (2024-09-24T13:12:29Z) - Self-Knowledge Distillation for Learning Ambiguity [11.755814660833549]
Recent language models often over-confidently predict a single label without consideration for its correctness.
We propose a novel self-knowledge distillation method that enables models to learn label distributions more accurately.
We validate our method on diverse NLU benchmark datasets and the experimental results demonstrate its effectiveness in producing better label distributions.
arXiv Detail & Related papers (2024-06-14T05:11:32Z) - Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
We propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM)
We show that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas.
Our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable to some supervised methods.
arXiv Detail & Related papers (2024-02-27T13:55:17Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
Supervised classification algorithms are used to solve a growing number of real-life problems around the globe.
Unfortunately, acquiring good-quality annotations for many tasks is infeasible or too expensive to be done in practice.
We propose two novel annotation unification algorithms that utilize unlabeled parts of the sample space.
arXiv Detail & Related papers (2023-07-25T19:40:41Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Crowd Counting with Sparse Annotation [28.793141115957564]
We argue that sparse labeling can reduce redundancy of full annotation and capture more diverse information from distant individuals.
We propose a point-based Progressive Point Matching network (PPM) to explore the crowd from the whole image with sparse annotation.
Our experimental results show that PPM outperforms previous semi-supervised crowd counting methods with the same amount of annotation by a large margin.
arXiv Detail & Related papers (2023-04-12T17:57:48Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning [58.59343434538218]
We propose a simple but quite effective approach to predict accurate negative pseudo-labels of unlabeled data from an indirect learning perspective.
Our approach can be implemented in just few lines of code by only using off-the-shelf operations.
arXiv Detail & Related papers (2022-09-28T02:11:34Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets.
To mitigate the requirement for labeled data, self-training is widely used in both academia and industry by pseudo labeling on readily-available unlabeled data.
We propose Debiased, in which the generation and utilization of pseudo labels are decoupled by two independent heads.
arXiv Detail & Related papers (2022-02-15T02:14:33Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Learning from Crowds with Sparse and Imbalanced Annotations [29.596070201105274]
crowdsourcing has established itself as an efficient labeling solution through resorting to non-expert crowds.
One common practice is to distribute each instance to multiple workers, whereas each worker only annotates a subset of data, resulting in the it sparse annotation phenomenon.
We propose one self-training based approach named it Self-Crowd by progressively adding confident pseudo-annotations and rebalancing the annotation distribution.
arXiv Detail & Related papers (2021-07-11T13:06:20Z) - CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific
Perturbations for Tabular Data [8.276156981100364]
Co-teaching methods have shown promising improvements for computer vision problems with noisy labels.
Our model, CrowdTeacher, uses the idea that robustness in the input space model can improve the perturbation of the classifier for noisy labels.
We showcase the boost in predictive power attained using CrowdTeacher for both synthetic and real datasets.
arXiv Detail & Related papers (2021-03-31T15:09:38Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.