論文の概要: Machine Learning Containers are Bloated and Vulnerable
- arxiv url: http://arxiv.org/abs/2212.09437v1
- Date: Fri, 16 Dec 2022 10:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 18:53:16.870465
- Title: Machine Learning Containers are Bloated and Vulnerable
- Title(参考訳): 機械学習のコンテナは肥大し、脆弱である
- Authors: Huaifeng Zhang, Fahmi Abdulqadir Ahmed, Dyako Fatih, Akayou Kitessa,
Mohannad Alhanahnah, Philipp Leitner, Ahmed Ali-Eldin
- Abstract要約: 機械学習コンテナの肥大を解析するフレームワークであるMMLBを開発した。
我々のツールは肥大の原因を定量化し、それらを除去する。
公式のPytorchとNVIDIAのコンテナレジストリから15の機械学習コンテナを調査した。
- 参考スコア(独自算出の注目度): 3.9119172498051964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's software is bloated leading to significant resource wastage. This
bloat is prevalent across the entire software stack, from the operating system,
all the way to software backends, frontends, and web-pages. In this paper, we
study how prevalent bloat is in machine learning containers. We develop MMLB, a
framework to analyze bloat in machine learning containers, measuring the amount
of bloat that exists on the container and package levels. Our tool quantifies
the sources of bloat and removes them. We integrate our tool with vulnerability
analysis tools to measure how bloat affects container vulnerabilities. We
experimentally study 15 machine learning containers from the official
Tensorflow, Pytorch, and NVIDIA container registries under different tasks,
(i.e., training, tuning, and serving). Our findings show that machine learning
containers contain bloat encompassing up to 80\% of the container size. We find
that debloating machine learning containers speeds provisioning times by up to
$3.7\times$ and removes up to 98\% of all vulnerabilities detected by
vulnerability analysis tools such as Grype. Finally, we relate our results to
the larger discussion about technical debt in machine learning systems.
- Abstract(参考訳): 今日のソフトウェアは肥大し、リソースの浪費に繋がる。
この肥大化は、オペレーティングシステムからソフトウェアバックエンド、フロントエンド、Webページに至るまで、ソフトウェアスタック全体に広まっています。
本稿では,機械学習コンテナにおける肥大度について検討する。
我々は機械学習コンテナの肥大化を分析するフレームワークであるMMLBを開発し、コンテナとパッケージレベルに存在する肥大化の量を測定する。
私たちのツールは、膨れの源を定量化し、取り除きます。
ツールと脆弱性分析ツールを統合して、肥大化がコンテナの脆弱性に与える影響を測定します。
我々は、公式のTensorflow、Pytorch、NVIDIAコンテナレジストリから、さまざまなタスク(トレーニング、チューニング、サービスなど)で15の機械学習コンテナを実験的に調査した。
以上の結果から,機械学習コンテナはコンテナサイズの最大80%の肥大を包含していることがわかった。
また、Grypeのような脆弱性分析ツールによって検出されたすべての脆弱性の98パーセントを削除しています。
最後に、機械学習システムにおける技術的負債に関するより大きな議論と結果を関連付ける。
関連論文リスト
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - An empirical study of bloated dependencies in CommonJS packages [6.115666382910127]
サーバサイドアプリケーションで完全に使用されていない肥大化した依存関係を調査するために、実証的研究を行う。
本稿では,ファイルアクセスを監視し,実行中にどの依存関係がアクセスされないかを決定するトレースベースの動的解析手法を提案する。
以上の結果から,パッケージマネージャにおける依存性のデブロ化に対するネイティブサポートは,依存関係維持の負担を大幅に軽減する可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-28T08:04:01Z) - LUCID: A Framework for Reducing False Positives and Inconsistencies Among Container Scanning Tools [0.0]
本稿では,複数のスキャンツールによって提供される偽陽性や不整合を低減できるLUCIDというフレームワークを提案する。
その結果,我々のフレームワークは不整合を70%削減できることがわかった。
また、異なる重大度レベルを84%の精度で分類し、予測できる動的分類コンポーネントを作成します。
論文 参考訳(メタデータ) (2024-05-11T16:58:28Z) - Green AI: A Preliminary Empirical Study on Energy Consumption in DL
Models Across Different Runtime Infrastructures [56.200335252600354]
トレーニング済みのモデルを、ネイティブな開発環境とは異なる環境にデプロイするのは、一般的なプラクティスです。
これにより、インフラを含むONNXや標準フォーマットとして機能するONNXなどの交換フォーマットが導入された。
論文 参考訳(メタデータ) (2024-02-21T09:18:44Z) - Jup2Kub: algorithms and a system to translate a Jupyter Notebook
pipeline to a fault tolerant distributed Kubernetes deployment [0.9790236766474201]
科学は計算、データ操作、時には科学的データ分析のための可視化ステップを促進する。
Jupyterノートブックは、より大きなデータセットでスケールするのに苦労し、耐障害性がなく、基盤となるツールやパッケージの安定性に大きく依存している。
Jup2KupはJupyterノートブックから分散された高性能環境に変換し、フォールトトレランスを向上させる。
論文 参考訳(メタデータ) (2023-11-21T02:54:06Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - BLAFS: A Bloat Aware File System [2.3476033905954687]
コンテナ用のBLoat-Aware-fileシステムであるBLAFSを紹介する。
BLAFSは、クラウドおよびエッジシステムのデブロ安全性を保証する。
論文 参考訳(メタデータ) (2023-05-08T11:41:30Z) - Opacus: User-Friendly Differential Privacy Library in PyTorch [54.8720687562153]
私たちは、差分プライバシーでディープラーニングモデルをトレーニングするための、オープンソースのPyTorchライブラリであるOpacusを紹介します。
シンプルでユーザフレンドリなAPIを提供しており、コードに最大2行を追加することで、マシンラーニングの実践者がトレーニングパイプラインをプライベートにすることができる。
論文 参考訳(メタデータ) (2021-09-25T07:10:54Z) - TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems [5.188829601887422]
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みシステム上でディープラーニングモデルを実行するための,オープンソースのML推論フレームワークであるLite Microを紹介した。
論文 参考訳(メタデータ) (2020-10-17T00:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。