論文の概要: Machine Learning Systems are Bloated and Vulnerable
- arxiv url: http://arxiv.org/abs/2212.09437v2
- Date: Mon, 8 May 2023 11:04:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 23:39:17.428168
- Title: Machine Learning Systems are Bloated and Vulnerable
- Title(参考訳): 機械学習システムは肥大化し、脆弱です
- Authors: Huaifeng Zhang, Fahmi Abdulqadir Ahmed, Dyako Fatih, Akayou Kitessa,
Mohannad Alhanahnah, Philipp Leitner, Ahmed Ali-Eldin
- Abstract要約: 機械学習コンテナの肥大を解析するフレームワークであるMMLBを開発した。
我々のツールは肥大の原因を定量化し、分析ツールと統合して、肥大化がコンテナの脆弱性に与える影響を評価する。
- 参考スコア(独自算出の注目度): 3.9119172498051964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's software is bloated with both code and features that are not used by
most users. This bloat is prevalent across the entire software stack, from the
operating system, all the way to software backends, frontends, and web-pages.
In this paper, we focus on analyzing and quantifying bloat in machine learning
containers. We develop MMLB, a framework to analyze bloat in machine learning
containers, measuring the amount of bloat that exists on the container and
package levels. Our tool quantifies the sources of bloat and integrates with
vulnerability analysis tools to evaluate the impact of bloat on container
vulnerabilities. Through experimentation with 15 machine learning containers
from Tensorflow, Pytorch, and NVIDIA, we show that bloat is a significant
issue, accounting for up to 80% of the container size in some cases. Our
results demonstrate that bloat significantly increases the container
provisioning time by up to 370% and exacerbates vulnerabilities by up to 99%.
- Abstract(参考訳): 今日のソフトウェアは、ほとんどのユーザが使用していないコードと機能の両方で肥大化している。
この肥大化は、オペレーティングシステムからソフトウェアバックエンド、フロントエンド、Webページに至るまで、ソフトウェアスタック全体に広まっています。
本稿では,機械学習コンテナの肥大の分析と定量化に注目する。
我々は機械学習コンテナの肥大化を分析するフレームワークであるMMLBを開発し、コンテナとパッケージレベルに存在する肥大化の量を測定する。
当社のツールはbloatのソースを定量化し,コンテナ脆弱性に対するbloatの影響を評価する脆弱性解析ツールと統合する。
tensorflow、pytorch、nvidiaの15の機械学習コンテナの実験を通じて、肥大化が重要な問題であることを示し、場合によってはコンテナサイズの最大80%を占めている。
その結果,bloatはコンテナのプロビジョニング時間を最大370%増加させ,脆弱性を最大99%悪化させることがわかった。
関連論文リスト
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - An empirical study of bloated dependencies in CommonJS packages [6.115666382910127]
サーバサイドアプリケーションで完全に使用されていない肥大化した依存関係を調査するために、実証的研究を行う。
本稿では,ファイルアクセスを監視し,実行中にどの依存関係がアクセスされないかを決定するトレースベースの動的解析手法を提案する。
以上の結果から,パッケージマネージャにおける依存性のデブロ化に対するネイティブサポートは,依存関係維持の負担を大幅に軽減する可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-28T08:04:01Z) - LUCID: A Framework for Reducing False Positives and Inconsistencies Among Container Scanning Tools [0.0]
本稿では,複数のスキャンツールによって提供される偽陽性や不整合を低減できるLUCIDというフレームワークを提案する。
その結果,我々のフレームワークは不整合を70%削減できることがわかった。
また、異なる重大度レベルを84%の精度で分類し、予測できる動的分類コンポーネントを作成します。
論文 参考訳(メタデータ) (2024-05-11T16:58:28Z) - Green AI: A Preliminary Empirical Study on Energy Consumption in DL
Models Across Different Runtime Infrastructures [56.200335252600354]
トレーニング済みのモデルを、ネイティブな開発環境とは異なる環境にデプロイするのは、一般的なプラクティスです。
これにより、インフラを含むONNXや標準フォーマットとして機能するONNXなどの交換フォーマットが導入された。
論文 参考訳(メタデータ) (2024-02-21T09:18:44Z) - Jup2Kub: algorithms and a system to translate a Jupyter Notebook
pipeline to a fault tolerant distributed Kubernetes deployment [0.9790236766474201]
科学は計算、データ操作、時には科学的データ分析のための可視化ステップを促進する。
Jupyterノートブックは、より大きなデータセットでスケールするのに苦労し、耐障害性がなく、基盤となるツールやパッケージの安定性に大きく依存している。
Jup2KupはJupyterノートブックから分散された高性能環境に変換し、フォールトトレランスを向上させる。
論文 参考訳(メタデータ) (2023-11-21T02:54:06Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - BLAFS: A Bloat Aware File System [2.3476033905954687]
コンテナ用のBLoat-Aware-fileシステムであるBLAFSを紹介する。
BLAFSは、クラウドおよびエッジシステムのデブロ安全性を保証する。
論文 参考訳(メタデータ) (2023-05-08T11:41:30Z) - Opacus: User-Friendly Differential Privacy Library in PyTorch [54.8720687562153]
私たちは、差分プライバシーでディープラーニングモデルをトレーニングするための、オープンソースのPyTorchライブラリであるOpacusを紹介します。
シンプルでユーザフレンドリなAPIを提供しており、コードに最大2行を追加することで、マシンラーニングの実践者がトレーニングパイプラインをプライベートにすることができる。
論文 参考訳(メタデータ) (2021-09-25T07:10:54Z) - TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems [5.188829601887422]
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みデバイス上でのディープラーニング推論は、小さな組み込みデバイスが一様であることから、無数のアプリケーションで溢れている分野である。
組み込みシステム上でディープラーニングモデルを実行するための,オープンソースのML推論フレームワークであるLite Microを紹介した。
論文 参考訳(メタデータ) (2020-10-17T00:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。