Adaptive Control of Client Selection and Gradient Compression for
Efficient Federated Learning
- URL: http://arxiv.org/abs/2212.09483v1
- Date: Mon, 19 Dec 2022 14:19:07 GMT
- Title: Adaptive Control of Client Selection and Gradient Compression for
Efficient Federated Learning
- Authors: Zhida Jiang, Yang Xu, Hongli Xu, Zhiyuan Wang, Chen Qian
- Abstract summary: Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data.
We propose a heterogeneous-aware FL framework, called FedCG, with adaptive client selection and gradient compression.
Experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$times$ speedup compared to other methods.
- Score: 28.185096784982544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) allows multiple clients cooperatively train models
without disclosing local data. However, the existing works fail to address all
these practical concerns in FL: limited communication resources, dynamic
network conditions and heterogeneous client properties, which slow down the
convergence of FL. To tackle the above challenges, we propose a
heterogeneity-aware FL framework, called FedCG, with adaptive client selection
and gradient compression. Specifically, the parameter server (PS) selects a
representative client subset considering statistical heterogeneity and sends
the global model to them. After local training, these selected clients upload
compressed model updates matching their capabilities to the PS for aggregation,
which significantly alleviates the communication load and mitigates the
straggler effect. We theoretically analyze the impact of both client selection
and gradient compression on convergence performance. Guided by the derived
convergence rate, we develop an iteration-based algorithm to jointly optimize
client selection and compression ratio decision using submodular maximization
and linear programming. Extensive experiments on both real-world prototypes and
simulations show that FedCG can provide up to 5.3$\times$ speedup compared to
other methods.
Related papers
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
arXiv Detail & Related papers (2024-02-06T07:25:21Z) - Greedy Shapley Client Selection for Communication-Efficient Federated
Learning [32.38170282930876]
Standard client selection algorithms for Federated Learning (FL) are often unbiased and involve uniform random sampling of clients.
We develop a biased client selection strategy, GreedyFed, that identifies and greedily selects the most contributing clients in each communication round.
Compared to various client selection strategies on several real-world datasets, GreedyFed demonstrates fast and stable convergence with high accuracy under timing constraints.
arXiv Detail & Related papers (2023-12-14T16:44:38Z) - Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning [14.866327821524854]
HiCS-FL is a novel client selection method in which the server estimates statistical heterogeneity of a client's data using the client's update of the network's output layer.
In non-IID settings HiCS-FL achieves faster convergence than state-of-the-art FL client selection schemes.
arXiv Detail & Related papers (2023-09-30T00:29:30Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Multi-Armed Bandit Based Client Scheduling for Federated Learning [91.91224642616882]
federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy.
In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels.
This work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients.
arXiv Detail & Related papers (2020-07-05T12:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.