論文の概要: Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images
- arxiv url: http://arxiv.org/abs/2212.09589v1
- Date: Tue, 13 Dec 2022 11:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 02:43:17.749481
- Title: Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images
- Title(参考訳): RGB画像における非デジタルオブジェクトのマッチングのための良いキーポイント検出の学習
- Authors: Welerson Melo, Guilherme Potje, Felipe Cadar, Renato Martins and
Erickson R. Nascimento
- Abstract要約: 本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、アノテートされた画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
実験の結果,本手法は平均整合精度で20時までに非剛体物体の実像に対して,最先端のキーポイント検出器よりも優れていた。
- 参考スコア(独自算出の注目度): 7.428474910083337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel learned keypoint detection method designed to maximize the
number of correct matches for the task of non-rigid image correspondence. Our
training framework uses true correspondences, obtained by matching annotated
image pairs with a predefined descriptor extractor, as a ground-truth to train
a convolutional neural network (CNN). We optimize the model architecture by
applying known geometric transformations to images as the supervisory signal.
Experiments show that our method outperforms the state-of-the-art keypoint
detector on real images of non-rigid objects by 20 p.p. on Mean Matching
Accuracy and also improves the matching performance of several descriptors when
coupled with our detection method. We also employ the proposed method in one
challenging realworld application: object retrieval, where our detector
exhibits performance on par with the best available keypoint detectors. The
source code and trained model are publicly available at
https://github.com/verlab/LearningToDetect SIBGRAPI 2022
- Abstract(参考訳): 本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、注釈付き画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
画像に既知の幾何変換を監督信号として適用することにより,モデルアーキテクチャを最適化する。
実験により,非剛性物体の実画像における最先端のキーポイント検出器を平均マッチング精度で20 p.p.に上回り,検出法と組み合わせて複数のディスクリプタのマッチング性能も向上した。
また,提案手法を,最も有効なキーポイント検出器と同等の性能を示すオブジェクト検索という,現実的な課題の1つに応用する。
ソースコードとトレーニングされたモデルは、https://github.com/verlab/LearningToDetect SIBGRAPI 2022で公開されている。
関連論文リスト
- On the Effectiveness of Dataset Alignment for Fake Image Detection [28.68129042301801]
優れた検出器は、セマンティックコンテンツ、解像度、ファイルフォーマットなどの画像特性を無視しながら、生成モデル指紋に焦点を当てるべきである。
この研究では、これらのアルゴリズムの選択に加えて、堅牢な検出器をトレーニングするためには、リアル/フェイク画像の整列したデータセットも必要である、と論じる。
そこで本研究では, LDMの家族に対して, LDMのオートエンコーダを用いて実画像の再構成を行う手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T17:58:07Z) - Leveraging Semantic Cues from Foundation Vision Models for Enhanced Local Feature Correspondence [12.602194710071116]
本稿では,基礎視覚モデルの特徴から意味的手がかりを抽出し,局所的特徴マッチングを強化する手法を提案する。
カメラのローカライゼーションにおける性能は平均29%向上し,既存の6つのディスクリプタの適応版を提示する。
論文 参考訳(メタデータ) (2024-10-12T13:45:26Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
本稿では,意味的対応の学習に固有のデータ・ハングリー・マターが存在するという仮説に基づく。
我々は,機械の監督を通じて,ペア化されたキーポイントを確実に強化する単純な機械注釈器を実証する。
我々のモデルは,SPair-71k,PF-PASCAL,PF-WILLOWといった意味対応学習ベンチマークの最先端モデルを上回る。
論文 参考訳(メタデータ) (2023-11-30T13:22:15Z) - Improving the matching of deformable objects by learning to detect
keypoints [6.4587163310833855]
本研究では,非剛性画像対応タスクにおける正しいマッチング数を増やすための新しい学習キーポイント検出手法を提案する。
我々はエンドツーエンドの畳み込みニューラルネットワーク(CNN)をトレーニングし、考慮された記述子により適したキーポイント位置を見つける。
実験により,本手法は検出手法と併用して多数の記述子の平均マッチング精度を向上させることを示した。
また,本手法を,現在利用可能な最も優れたキーポイント検出器と同等に動作する複雑な実世界のタスクオブジェクト検索に適用する。
論文 参考訳(メタデータ) (2023-09-01T13:02:19Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Enhancing Deformable Local Features by Jointly Learning to Detect and
Describe Keypoints [8.390939268280235]
局所特徴抽出は、画像マッチングや検索といった重要なタスクに対処するためのコンピュータビジョンにおける標準的なアプローチである。
鍵点を共同で検出・記述する新しい変形認識ネットワークであるDALFを提案する。
提案手法は、変形可能なオブジェクト検索と、非剛性な3次元表面登録という、2つの実世界のアプリケーションの性能を向上させる。
論文 参考訳(メタデータ) (2023-04-02T18:01:51Z) - SISL:Self-Supervised Image Signature Learning for Splicing Detection and
Localization [11.437760125881049]
画像の周波数変換からスプライシング検出/局所化モデルを訓練するための自己教師型アプローチを提案する。
提案したモデルでは,ラベルやメタデータを使わずに,標準データセット上で同様のあるいはより良いパフォーマンスが得られる。
論文 参考訳(メタデータ) (2022-03-15T12:26:29Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
教師なしのコントラスト学習は,CNNを用いた画像表現学習において大きな成功を収めている。
我々は,グローバルイメージとローカルイメージパッチのコントラストをフルに検討する,DetCoという新しいコントラスト学習手法を提案する。
DetCoは1倍のスケジュールでMask RCNN-C4/FPN/RetinaNet上で1.6/1.2/1.0 APで教師付き手法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-02-09T12:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。