論文の概要: Learning to Make Keypoints Sub-Pixel Accurate
- arxiv url: http://arxiv.org/abs/2407.11668v1
- Date: Tue, 16 Jul 2024 12:39:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:02:09.546547
- Title: Learning to Make Keypoints Sub-Pixel Accurate
- Title(参考訳): キーポイントをサブピクセルで精度良くする学習
- Authors: Shinjeong Kim, Marc Pollefeys, Daniel Barath,
- Abstract要約: 本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
- 参考スコア(独自算出の注目度): 80.55676599677824
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work addresses the challenge of sub-pixel accuracy in detecting 2D local features, a cornerstone problem in computer vision. Despite the advancements brought by neural network-based methods like SuperPoint and ALIKED, these modern approaches lag behind classical ones such as SIFT in keypoint localization accuracy due to their lack of sub-pixel precision. We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features, thereby eliminating the need for designing specialized sub-pixel accurate detectors. This optimization directly minimizes test-time evaluation metrics like relative pose error. Through extensive testing with both nearest neighbors matching and the recent LightGlue matcher across various real-world datasets, our method consistently outperforms existing methods in accuracy. Moreover, it adds only around 7 ms to the time of a particular detector. The code is available at https://github.com/KimSinjeong/keypt2subpx .
- Abstract(参考訳): 本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
SuperPointやALIKEDのようなニューラルネットワークベースの手法によってもたらされた進歩にもかかわらず、これらの現代的なアプローチは、SIFTのような古典的な手法よりも、サブピクセル精度の欠如によるキーポイントのローカライゼーション精度に遅れを取っている。
本稿では,検出された特徴のオフセットベクトルを学習することにより,サブピクセル精度の高い検出器を設計する必要をなくし,任意の検出器をサブピクセル精度で拡張するネットワークを提案する。
この最適化は、相対的なポーズエラーのようなテスト時間評価の指標を直接最小化する。
近隣のマッチングと最近のLightGlue整合器による様々な実世界のデータセットの広範なテストを通じて、我々の手法は既存の手法を常に精度で上回っている。
さらに、特定の検出器の時間に約7ミリ秒加えるだけである。
コードはhttps://github.com/KimSinjeong/keypt2subpx で公開されている。
関連論文リスト
- Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing [0.7305342793164903]
本研究では,2段階物体検出器のモデル簡易化手法を提案する。
本手法は,DOTAv1.5データセットの2.1%以内の精度で計算コストを61.2%まで削減する。
論文 参考訳(メタデータ) (2024-04-11T00:45:10Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Improving the matching of deformable objects by learning to detect
keypoints [6.4587163310833855]
本研究では,非剛性画像対応タスクにおける正しいマッチング数を増やすための新しい学習キーポイント検出手法を提案する。
我々はエンドツーエンドの畳み込みニューラルネットワーク(CNN)をトレーニングし、考慮された記述子により適したキーポイント位置を見つける。
実験により,本手法は検出手法と併用して多数の記述子の平均マッチング精度を向上させることを示した。
また,本手法を,現在利用可能な最も優れたキーポイント検出器と同等に動作する複雑な実世界のタスクオブジェクト検索に適用する。
論文 参考訳(メタデータ) (2023-09-01T13:02:19Z) - DAC: Detector-Agnostic Spatial Covariances for Deep Local Features [11.494662473750505]
現在の深部視覚特徴検出器は検出された特徴の空間的不確かさをモデル化していない。
本稿では,事前訓練したディープ特徴検出器に接続可能な2つのポストホック共分散推定法を提案する。
論文 参考訳(メタデータ) (2023-05-20T17:43:09Z) - Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images [7.428474910083337]
本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、アノテートされた画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
実験の結果,本手法は平均整合精度で20時までに非剛体物体の実像に対して,最先端のキーポイント検出器よりも優れていた。
論文 参考訳(メタデータ) (2022-12-13T11:59:09Z) - ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor
Extraction [21.994171434960734]
本稿では,高精度なサブピクセルキーポイントを出力する可変キーポイント検出モジュールを提案する。
次に、これらのサブピクセルキーポイントを直接最適化するために再投影損失を提案し、分散ピーク損失を正確なキーポイント正規化のために提示する。
軽量ネットワークはキーポイント検出とディスクリプタ抽出のために設計されており、商用GPU上で640x480の画像に対して毎秒95フレームで動作する。
論文 参考訳(メタデータ) (2021-12-06T10:10:30Z) - Pixel-Perfect Structure-from-Motion with Featuremetric Refinement [96.73365545609191]
複数視点からの低レベル画像情報を直接アライメントすることで、動きからの2つの重要なステップを洗練する。
これにより、様々なキーポイント検出器のカメラポーズとシーン形状の精度が大幅に向上する。
本システムは,大規模な画像コレクションに容易にスケールできるので,クラウドソースによる大規模なローカライゼーションを実現することができる。
論文 参考訳(メタデータ) (2021-08-18T17:58:55Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) は、2D-3D特徴座標の3Dモデルに関して、高速で正確で堅牢なカメラローカライゼーションを目指している。
論文 参考訳(メタデータ) (2021-07-08T15:19:36Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
質問をひっくり返し、まず繰り返し可能な3Dポイントを探し、次に検出器を訓練して画像空間にローカライズする、反復的半教師付き学習プロセスSEDMを提案する。
以上の結果から,sdmを用いてトレーニングした新しいモデルでは,シーン内の下位3dポイントのローカライズが容易になった。
論文 参考訳(メタデータ) (2021-04-21T00:35:32Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。