論文の概要: Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages
- arxiv url: http://arxiv.org/abs/2212.09651v4
- Date: Mon, 10 Jul 2023 22:27:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 19:08:04.672502
- Title: Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages
- Title(参考訳): 低リソース言語のための言語横断検索プロンプト
- Authors: Ercong Nie, Sheng Liang, Helmut Schmid, Hinrich Sch\"utze
- Abstract要約: 低リソース言語におけるゼロショット性能を改善するために,Retrieval Crosslingually Pipelinesによって拡張されたPromptsを提案する。
その結果,一方の言語間移動性能と高次言語と低次言語との類似性の間に有意な正の相関が認められた。
堅牢性分析は、PARCがより強力なMPLMでさらに強力な性能を達成する可能性を示唆している。
- 参考スコア(独自算出の注目度): 0.6117371161379209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Pretrained Language Models (MPLMs) have shown their strong
multilinguality in recent empirical cross-lingual transfer studies. In this
paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC)
pipeline to improve the zero-shot performance on low-resource languages (LRLs)
by augmenting the context with semantically similar sentences retrieved from a
high-resource language (HRL) as prompts. PARC improves the zero-shot
performance on three downstream tasks (binary sentiment classification, topic
categorization and natural language inference) with multilingual parallel test
sets across 10 LRLs covering 6 language families in both unlabeled settings
(+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the
finetuning baseline by 3.7%. We find a significant positive correlation between
cross-lingual transfer performance on one side, and the similarity between the
high- and low-resource languages as well as the amount of low-resource
pretraining data on the other side. A robustness analysis suggests that PARC
has the potential to achieve even stronger performance with more powerful
MPLMs.
- Abstract(参考訳): 多言語前訓練言語モデル(mplms)は、最近の経験的言語間移行研究において、その強い多言語性を示している。
本稿では,低リソース言語 (LRL) におけるゼロショット性能を向上させるために,高リソース言語 (HRL) から取得した意味的に類似した文をプロンプトとして拡張することにより,Pmpts Augmented by Retrieval Crosslingually (PARC) パイプラインを提案する。
PARCは3つの下流タスク(バイナリ感情分類、トピック分類、自然言語推論)におけるゼロショットのパフォーマンスを改善し、ラベルなし設定(+5.1%)とラベル付き設定(+16.3%)の6つの言語ファミリーをカバーする10のLRLにわたる多言語並列テストセットを提供する。
PARC-labeledは微調整ベースラインを3.7%上回っている。
その結果,一方の言語間伝達性能と高・低リソース言語間の類似性,他方の低リソースプリトレーニングデータの量との間に有意な相関が認められた。
堅牢性分析は、PARCがより強力なMPLMでさらに強力な性能を達成する可能性を示唆している。
関連論文リスト
- Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing [6.074150063191985]
Cross-Lingual Back-Parsing(クロスリンガル・バック・パーシング)は、セマンティック・パーシングのためのクロスリンガル・トランスファーを強化するために設計された新しいデータ拡張手法である。
提案手法は,ゼロリソース設定に挑戦する上で,言語間データ拡張を効果的に行う。
論文 参考訳(メタデータ) (2024-10-01T08:53:38Z) - Zero-Shot Cross-Lingual Document-Level Event Causality Identification with Heterogeneous Graph Contrastive Transfer Learning [22.389718537939174]
事象因果同定(英: Event Causality Identification、ECI)とは、テキスト中の事象間の因果関係を検出すること。
文書レベルのECIのための多粒性コントラスト変換学習(GIMC)を用いた異種グラフ相互作用モデルを提案する。
筆者らのフレームワークは, 単言語および多言語シナリオの平均F1スコアの9.4%と8.2%で, 従来の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-03-05T11:57:21Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
言語間移動は多言語NLPにおける中心的なタスクである。
このタスクの以前の作業では、並列コーパス、バイリンガル辞書、その他の注釈付きアライメントデータを使用していた。
ゼロショットの言語間移動を改善するため, 単純で効果的なSALT法を提案する。
論文 参考訳(メタデータ) (2023-09-19T19:30:56Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Strategies for improving low resource speech to text translation relying
on pre-trained ASR models [59.90106959717875]
本稿では,テキスト翻訳(ST)における低音源音声の性能向上のための技術と知見について述べる。
本研究は,英語とポルトガル語,タマシェク語とフランス語の2つの言語対について,シミュレーションおよび実低資源設定について実験を行った。
論文 参考訳(メタデータ) (2023-05-31T21:58:07Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - Overlap-based Vocabulary Generation Improves Cross-lingual Transfer
Among Related Languages [18.862296065737347]
語彙重なりの次元に沿った言語族における言語間の関連性は、LRLのコーパス制限を克服するために活用される可能性がある。
そこで我々は,BPE語彙生成アルゴリズムを改良したOverlap BPEを提案する。
論文 参考訳(メタデータ) (2022-03-03T19:35:24Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z) - From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual
Transfer with Multilingual Transformers [62.637055980148816]
言語モデリングの目的によって事前訓練された多言語トランスフォーマーは、NLPの事実上のデフォルト転送パラダイムとなっている。
膨大な多言語変換器による言語間変換は,リソースリーンシナリオや遠方言語では著しく効果が低いことを示す。
論文 参考訳(メタデータ) (2020-05-01T22:04:58Z) - Cross-Lingual Semantic Role Labeling with High-Quality Translated
Training Corpus [41.031187560839555]
言語間セマンティックロールのラベル付けは、この問題に対処するための有望な方法である。
目的言語のための高品質なトレーニングデータセットを構築するためのコーパス翻訳に基づく新しい代替案を提案する。
ユニバーサル・プロポーション・バンクの実験結果から, 翻訳法が有効であることが示唆された。
論文 参考訳(メタデータ) (2020-04-14T04:16:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。