論文の概要: Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing
- arxiv url: http://arxiv.org/abs/2410.00513v1
- Date: Tue, 1 Oct 2024 08:53:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:07:10.053293
- Title: Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing
- Title(参考訳): 言語間バックパーシング:ゼロソースセマンティックパーシングにおける意味表現からの発話合成
- Authors: Deokhyung Kang, Seonjeong Hwang, Yunsu Kim, Gary Geunbae Lee,
- Abstract要約: Cross-Lingual Back-Parsing(クロスリンガル・バック・パーシング)は、セマンティック・パーシングのためのクロスリンガル・トランスファーを強化するために設計された新しいデータ拡張手法である。
提案手法は,ゼロリソース設定に挑戦する上で,言語間データ拡張を効果的に行う。
- 参考スコア(独自算出の注目度): 6.074150063191985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
- Abstract(参考訳): 近年の取り組みは、多言語事前訓練言語モデル(mPLM)を用いて、広範囲なアノテーションを必要とせずに、複数の言語にまたがる意味解析(SP)を拡張することを目的としている。
しかし、SPのためのゼロショットのクロスランガル転送を達成することは依然として困難であり、ソース言語とターゲット言語の間にパフォーマンスのギャップが生じる。
本研究では,SPの言語間移動を促進させる新しいデータ拡張手法であるクロスリンガル・バックパーシング(CBP)を提案する。
CBPはmPLMの表現幾何学を利用して、ソースの意味表現からターゲット言語発話を合成する。
本手法は,ソース言語とモノリンガルコーパスにおけるラベル付きデータのみを活用することで,ゼロリソース設定に挑戦する言語間データ拡張を効果的に行う。
2つのクロスランゲージSPベンチマーク(Mschema2QAとXspider)の大規模な実験は、CBPがターゲット言語にかなりの利益をもたらすことを示した。
合成音声のさらなる分析により,本手法は意味的整合性を維持しつつ高いスロット値アライメント率のターゲット言語発話を効果的に生成することを示す。
私たちのコードとデータはhttps://github.com/deokhk/CBPで公開されています。
関連論文リスト
- Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
言語間移動は多言語NLPにおける中心的なタスクである。
このタスクの以前の作業では、並列コーパス、バイリンガル辞書、その他の注釈付きアライメントデータを使用していた。
ゼロショットの言語間移動を改善するため, 単純で効果的なSALT法を提案する。
論文 参考訳(メタデータ) (2023-09-19T19:30:56Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
言語間NERは、整列した言語間表現や機械翻訳結果を通じて、言語間で知識を伝達することができる。
ゼロショット言語間NERを実現するために,クロスランガル・エンティティ・プロジェクション・フレームワーク(CROP)を提案する。
多言語ラベル付きシーケンス翻訳モデルを用いて、タグ付けされたシーケンスをターゲット言語に投影し、ターゲットの原文にラベル付けする。
論文 参考訳(メタデータ) (2022-10-13T13:32:36Z) - Meta-Learning a Cross-lingual Manifold for Semantic Parsing [75.26271012018861]
新しい言語をサポートするためにセマンティックをローカライズするには、効果的な言語間一般化が必要である。
本稿では,言語間移動において,最大サンプル効率で注釈付きセマンティックを学習するための一階メタ学習アルゴリズムを提案する。
ATIS上の6つの言語にまたがる結果は、ステップの組み合わせによって、各新言語におけるソーストレーニングデータの10パーセントを正確なセマンティクスでサンプリングできることを示している。
論文 参考訳(メタデータ) (2022-09-26T10:42:17Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
我々は,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
言語敵対的トレーニングと言語仲裁フレームワークという2つの新しい戦略を提案し、(ゼロリソースの)クロスリンガルトランスファーのパフォーマンスを大幅に改善します。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-10T20:29:34Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。