論文の概要: A Retrieve-and-Read Framework for Knowledge Graph Link Prediction
- arxiv url: http://arxiv.org/abs/2212.09724v3
- Date: Sun, 22 Oct 2023 17:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 13:57:08.248236
- Title: A Retrieve-and-Read Framework for Knowledge Graph Link Prediction
- Title(参考訳): 知識グラフリンク予測のための検索・読み出しフレームワーク
- Authors: Vardaan Pahuja, Boshi Wang, Hugo Latapie, Jayanth Srinivasa, Yu Su
- Abstract要約: 知識グラフ(KG)リンク予測は、KGの既存の事実に基づいて新しい事実を推測することを目的としている。
近年の研究では、グラフニューラルネットワーク(GNN)によるノードのグラフ近傍の利用は、単にクエリ情報を使用するよりも有用な情報を提供することが示された。
本稿では,まずクエリの関連部分グラフコンテキストを検索し,そのコンテキストとクエリを高容量の読者と共同で処理する新しい検索・読解フレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.91545690758128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph (KG) link prediction aims to infer new facts based on
existing facts in the KG. Recent studies have shown that using the graph
neighborhood of a node via graph neural networks (GNNs) provides more useful
information compared to just using the query information. Conventional GNNs for
KG link prediction follow the standard message-passing paradigm on the entire
KG, which leads to superfluous computation, over-smoothing of node
representations, and also limits their expressive power. On a large scale, it
becomes computationally expensive to aggregate useful information from the
entire KG for inference. To address the limitations of existing KG link
prediction frameworks, we propose a novel retrieve-and-read framework, which
first retrieves a relevant subgraph context for the query and then jointly
reasons over the context and the query with a high-capacity reader. As part of
our exemplar instantiation for the new framework, we propose a novel
Transformer-based GNN as the reader, which incorporates graph-based attention
structure and cross-attention between query and context for deep fusion. This
simple yet effective design enables the model to focus on salient context
information relevant to the query. Empirical results on two standard KG link
prediction datasets demonstrate the competitive performance of the proposed
method. Furthermore, our analysis yields valuable insights for designing
improved retrievers within the framework.
- Abstract(参考訳): 知識グラフ(KG)リンク予測は、KGの既存の事実に基づいて新しい事実を推測することを目的としている。
近年の研究では、グラフニューラルネットワーク(GNN)によるノードのグラフ近傍の利用は、単にクエリ情報を使用するよりも有用な情報を提供することが示された。
KGリンク予測のための従来のGNNは、KG全体の標準メッセージパスパラダイムに従い、過剰な計算、ノード表現の過度な平滑化、表現力の制限につながる。
大規模では、推論のためにKG全体から有用な情報を集めるのに計算コストがかかる。
既存のkgリンク予測フレームワークの限界に対処するために,まずクエリの関連するサブグラフコンテキストを検索し,そのコンテキストとクエリを高いキャパシティリーダと共同で理由付けする,新たな検索・読み取りフレームワークを提案する。
そこで我々は,新しいフレームワークのインスタンス化の一環として,グラフベースの注目構造とクエリとコンテキスト間の相互アテンションを組み込んだTransformerベースのGNNをリーダとして提案する。
このシンプルで効果的な設計により、モデルはクエリに関連する適切なコンテキスト情報に集中することができる。
2つの標準KGリンク予測データセットの実験的結果は,提案手法の競合性能を示す。
さらに,この分析は,フレームワーク内で改良されたレトリバーを設計する上で有用な洞察を与える。
関連論文リスト
- A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Dynamic Relevance Graph Network for Knowledge-Aware Question Answering [22.06211725256875]
本研究は,外部知識の源泉となるコモンセンス質問回答の学習と推論の課題について考察する。
我々はDynamic Relevance Graph Network (DRGN)と呼ばれる新しいグラフニューラルネットワークアーキテクチャを提案する。
DRGNは、質問に基づいて与えられたKGサブグラフで動作し、エンティティに回答し、ノード間の関連スコアを使用して新しいエッジを確立する。
論文 参考訳(メタデータ) (2022-09-20T18:52:05Z) - Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction [0.0]
我々はDECG-ILP(Disconnect Emerging Knowledge Graph Oriented Inductive Link Prediction)という新しいモデルを提案する。
CLRMは、元のKGとDECG間で共有されるグローバルな関係に基づく意味的特徴を抽出するために開発された。
モジュールGSMは、各リンク周辺の局所部分グラフトポロジ情報をKGで抽出するために提案される。
論文 参考訳(メタデータ) (2022-09-03T10:58:24Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoardは、データの意味のあるサブセットを詳細に評価するためのインタラクティブなフレームワークである。
実験では,KGxBoardを用いることで,標準平均シングルスコアメトリクスでは検出が不可能であったことを強調した。
論文 参考訳(メタデータ) (2022-08-23T15:11:45Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - MEKER: Memory Efficient Knowledge Embedding Representation for Link
Prediction and Question Answering [65.62309538202771]
知識グラフ(KG)は、事実を象徴的に構造化した記憶装置である。
KG埋め込みには、実世界の暗黙的な情報を必要とするNLPタスクで使用される簡潔なデータが含まれている。
リンク予測タスクとKGに基づく質問応答においてSOTAに比較可能な性能をもたらすメモリ効率のよいKG埋め込みモデルを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:47:03Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Relational Learning Analysis of Social Politics using Knowledge Graph
Embedding [11.978556412301975]
本稿では,新しい信頼性ドメインベースのKG埋め込みフレームワークを提案する。
ヘテロジニアスリソースから得られたデータの融合を、ドメインによって表現された正式なKG表現にキャプチャする。
このフレームワークは、データ品質と信頼性を保証するための信頼性モジュールも具体化している。
論文 参考訳(メタデータ) (2020-06-02T14:10:28Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。