論文の概要: A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
- arxiv url: http://arxiv.org/abs/2410.12288v1
- Date: Wed, 16 Oct 2024 06:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:25.787304
- Title: A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
- Title(参考訳): ユニバーサルインコンテキスト推論のためのプロンプトベース知識グラフ基礎モデル
- Authors: Yuanning Cui, Zequn Sun, Wei Hu,
- Abstract要約: そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 17.676185326247946
- License:
- Abstract: Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
- Abstract(参考訳): 様々なシナリオにおける知識駆動タスクを容易にするために,知識グラフ(KG)が構築されている。
しかしながら、既存の研究は通常、異なるKGに対する別々の推論モデルを開発し、多様なKGや推論設定にまたがる知識を一般化し、伝達する能力が欠如している。
本稿では,テキスト内学習,すなわちKG-ICLを介し,素早いKG基盤モデルを提案する。
具体的には、クエリ関係を理解するために、クエリ関連事例事実を中心としたプロンプトグラフをコンテキストとして紹介する。
本稿では,クエリにおけるエンティティとリレーションを発見できないような一般化機能を備えたプロンプトグラフを符号化するために,プロンプトグラフ内のエンティティとリレーションを予め定義されたトークンにマッピングする統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
43種類のKGをトランスダクティブおよびインダクティブの両方で評価する。
その結果,提案したKG-ICLは,その卓越した一般化と普遍的推論能力を示し,ほとんどのデータセットのベースラインよりも優れていたことが示唆された。
ソースコードはGitHubでアクセスできる。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - Context Graph [8.02985792541121]
本稿では,大規模言語モデル(LLM)を活用して候補エンティティや関連するコンテキストを検索する,コンテキストグラフ推論のtextbfCGR$3$パラダイムを提案する。
実験の結果、CGR$3$はKG完了(KGC)およびKG質問応答(KGQA)タスクの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T02:59:19Z) - Multi-hop Question Answering over Knowledge Graphs using Large Language Models [1.8130068086063336]
複数のホップを含む知識グラフに答える能力(LLM)を評価する。
我々は、KGのサイズや性質によって、関連する情報をLLMに抽出し、供給するために異なるアプローチが必要であることを示す。
論文 参考訳(メタデータ) (2024-04-30T03:31:03Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Knowledge Graphs Querying [4.548471481431569]
我々は、KGクエリのために開発された様々な学際的なトピックと概念を統一することを目的としている。
KGとクエリ埋め込み、マルチモーダルKG、KG-QAの最近の進歩は、ディープラーニング、IR、NLP、コンピュータビジョンドメインから来ている。
論文 参考訳(メタデータ) (2023-05-23T19:32:42Z) - A Retrieve-and-Read Framework for Knowledge Graph Link Prediction [13.91545690758128]
知識グラフ(KG)リンク予測は、KGの既存の事実に基づいて新しい事実を推測することを目的としている。
近年の研究では、グラフニューラルネットワーク(GNN)によるノードのグラフ近傍の利用は、単にクエリ情報を使用するよりも有用な情報を提供することが示された。
本稿では,まずクエリの関連部分グラフコンテキストを検索し,そのコンテキストとクエリを高容量の読者と共同で処理する新しい検索・読解フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-19T18:50:54Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLMは、事前訓練されたLMとグラフニューラルネットワークの符号化された表現を、複数の層にわたるモダリティ相互作用操作で融合する新しいモデルである。
GreaseLMは、状況制約と構造化知識の両方の推論を必要とする問題に、より確実に答えることができる。
論文 参考訳(メタデータ) (2022-01-21T19:00:05Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。