論文の概要: Dynamic Sparse Network for Time Series Classification: Learning What to
"see''
- arxiv url: http://arxiv.org/abs/2212.09840v1
- Date: Mon, 19 Dec 2022 20:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 14:17:34.666974
- Title: Dynamic Sparse Network for Time Series Classification: Learning What to
"see''
- Title(参考訳): 時系列分類のための動的スパースネットワーク:「見る」ものを学ぶ
- Authors: Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena
Mocanu, Decebal Constantin Mocanu
- Abstract要約: 時系列分類のための疎接続を有する動的スパースネットワーク(DSN)を提案する。
各スパース層のカーネルはスパースであり、動的スパーストレーニングによって制約領域の下で探索することができるため、リソースコストを削減できる。
- 参考スコア(独自算出の注目度): 17.705879794117912
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The receptive field (RF), which determines the region of time series to be
``seen'' and used, is critical to improve the performance for time series
classification (TSC). However, the variation of signal scales across and within
time series data, makes it challenging to decide on proper RF sizes for TSC. In
this paper, we propose a dynamic sparse network (DSN) with sparse connections
for TSC, which can learn to cover various RF without cumbersome
hyper-parameters tuning. The kernels in each sparse layer are sparse and can be
explored under the constraint regions by dynamic sparse training, which makes
it possible to reduce the resource cost. The experimental results show that the
proposed DSN model can achieve state-of-art performance on both univariate and
multivariate TSC datasets with less than 50\% computational cost compared with
recent baseline methods, opening the path towards more accurate resource-aware
methods for time series analyses. Our code is publicly available at:
https://github.com/QiaoXiao7282/DSN.
- Abstract(参考訳): 時系列の領域を 'seen' と判定し使用する受容場(RF)は、時系列分類(TSC)の性能を向上させるために重要である。
しかし、時系列データ間の信号スケールの変化は、TSCの適切なRFサイズを決定するのを困難にしている。
本稿では,TSCの疎結合を考慮した動的スパースネットワーク(DSN)を提案する。
各スパース層のカーネルはスパースであり、動的スパーストレーニングによって制約領域の下で探索することができるため、リソースコストを削減できる。
実験の結果,DSNモデルは,最近のベースライン法と比較して計算コストが50倍未満の単変量および多変量TSCデータセット上での最先端性能を達成でき,時系列解析のためのより正確な資源認識手法への道を開いた。
私たちのコードは、https://github.com/qiaoxiao7282/dsnで公開されています。
関連論文リスト
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-08T12:31:35Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
不規則にサンプリングされた時系列は、いくつかのアプリケーション領域でユビキタスであり、スパースであり、完全に観測されていない、非整合的な観察に繋がる。
標準シーケンシャルニューラルネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)は、観測時間間の定期的な間隔を考慮し、不規則な時系列モデリングに重大な課題を提起する。
時間的に不規則なカーネルを用いて畳み込み層をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-06T21:10:30Z) - Enhancing Multivariate Time Series Classifiers through Self-Attention
and Relative Positioning Infusion [4.18804572788063]
時系列分類(TSC)は、多くのビジュアルコンピューティングアプリケーションにとって重要かつ困難な課題である。
本稿では,深層学習に基づくTSCアプローチを強化する2つの新しいアテンションブロックを提案する。
提案するアテンションブロックを追加することで,ベースモデルの平均精度が最大3.6%向上することを示す。
論文 参考訳(メタデータ) (2023-02-13T20:50:34Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Training Robust Deep Models for Time-Series Domain: Novel Algorithms and
Theoretical Analysis [32.45387153404849]
時系列分類タスクのための堅牢なDNNを作成するために,RObust Training for Time-Series (RO-TS) と呼ばれる新しいフレームワークを提案する。
時系列アライメントによる和構造を用いた定式化の一般化と利点を示す。
実世界のベンチマーク実験により, RO-TSは, 対戦型トレーニングと比較して, より堅牢なDNNを生成することが示された。
論文 参考訳(メタデータ) (2022-07-09T17:21:03Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
SRDCNN: 時系列分類タスクを実行するために, SRDCNN(Strongly Regularized Deep Convolution Neural Network)をベースとしたディープアーキテクチャを提案する。
提案手法の新規性は、ネットワークウェイトが L1 と L2 のノルム法則によって正則化されることである。
論文 参考訳(メタデータ) (2020-07-14T08:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。