論文の概要: Concrete Dense Network for Long-Sequence Time Series Clustering
- arxiv url: http://arxiv.org/abs/2405.05015v1
- Date: Wed, 8 May 2024 12:31:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 18:41:08.867656
- Title: Concrete Dense Network for Long-Sequence Time Series Clustering
- Title(参考訳): 時系列クラスタリングのためのコンクリートディエンスネットワーク
- Authors: Redemptor Jr Laceda Taloma, Patrizio Pisani, Danilo Comminiello,
- Abstract要約: 時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
- 参考スコア(独自算出の注目度): 4.307648859471193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series clustering is fundamental in data analysis for discovering temporal patterns. Despite recent advancements, learning cluster-friendly representations is still challenging, particularly with long and complex time series. Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks but fall back on surrogate losses due to the non-differentiability of the hard cluster assignment, yielding sub-optimal solutions. In addition, the autoregressive strategy used in the state-of-the-art RNNs is subject to error accumulation and slow training, while recent research findings have revealed that Transformers are less effective due to time points lacking semantic meaning, to the permutation invariance of attention that discards the chronological order and high computation cost. In light of these observations, we present LoSTer which is a novel dense autoencoder architecture for the long-sequence time series clustering problem (LSTC) capable of optimizing the k-means objective via the Gumbel-softmax reparameterization trick and designed specifically for accurate and fast clustering of long time series. Extensive experiments on numerous benchmark datasets and two real-world applications prove the effectiveness of LoSTer over state-of-the-art RNNs and Transformer-based deep clustering methods.
- Abstract(参考訳): 時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
最近の進歩にもかかわらず、クラスタフレンドリな表現を学ぶことは、特に長く複雑な時系列では、依然として難しい。
深部時間クラスタリング手法は、標準k平均をニューラルネットワークのエンドツーエンドトレーニングに統合しようと試みてきたが、ハードクラスタ割り当ての非微分性によりサロゲート損失に陥り、準最適解が得られる。
また,現在最先端のRNNで使用されている自己回帰戦略は,時間的意味の欠如や,時間的順序や高い計算コストを捨てる注意の変動などにより,トランスフォーマーの有効性が低下していることが最近の研究で明らかになっている。
これらの観測結果を踏まえ、Gumbel-softmax再パラメータ化手法を用いてk-means目標を最適化できる長周期時系列クラスタリング問題(LSTC)のための新しい密集型オートエンコーダアーキテクチャであるLoSTerについて述べる。
多数のベンチマークデータセットと2つの実世界のアプリケーションに対する大規模な実験により、最先端のRNNとTransformerベースのディープクラスタリング手法に対するLoSTerの有効性が証明された。
関連論文リスト
- Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
不規則にサンプリングされた時系列は、いくつかのアプリケーション領域でユビキタスであり、スパースであり、完全に観測されていない、非整合的な観察に繋がる。
標準シーケンシャルニューラルネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)は、観測時間間の定期的な間隔を考慮し、不規則な時系列モデリングに重大な課題を提起する。
時間的に不規則なカーネルを用いて畳み込み層をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-06T21:10:30Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Time Series Clustering With Random Convolutional Kernels [0.0]
時系列データ(気候学から金融学、医療まで)は、データマイニングにおいて大きな課題を提示している。
ひとつは時系列クラスタリングで、これはラベルなしの時系列データの大量処理に不可欠である。
R-Clusteringは、ランダムに選択されたパラメータを持つ畳み込みアーキテクチャを利用する新しい手法である。
論文 参考訳(メタデータ) (2023-05-17T06:25:22Z) - Deep Temporal Contrastive Clustering [21.660509622172274]
本稿では,時間差の深いクラスタリング手法を提案する。
対照的な学習パラダイムを、ディープ時系列クラスタリング研究に取り入れている。
様々な時系列データセットの実験は、最先端技術に対する我々のアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2022-12-29T16:43:34Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis [8.660029077292346]
本稿では,学習した時系列のコンパクト表現,オートエンコードコンパクトシーケンス(AECS),階層クラスタリングアプローチを組み合わせたクラスタの識別機構を提案する。
Sequence to Sequence(seq2seq)オートエンコーダと集約型階層クラスタリングに基づくRecurrent Neural Network(RNN)を利用するアルゴリズムです。
論文 参考訳(メタデータ) (2021-01-11T08:03:57Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Autoencoder-based time series clustering with energy applications [0.0]
時系列クラスタリングは、データの特定の性質のため、難しい作業である。
本稿では,畳み込み型オートエンコーダとk-メノイドアルゴリズムの組み合わせによる時系列クラスタリングについて検討する。
論文 参考訳(メタデータ) (2020-02-10T10:04:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。