論文の概要: Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
- arxiv url: http://arxiv.org/abs/2409.17685v2
- Date: Thu, 24 Apr 2025 06:08:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.042842
- Title: Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples
- Title(参考訳): 特徴-画像データ拡張:クラスタ誘導合成サンプルによるモデル特徴抽出の改善
- Authors: Yasaman Haghbin, Hadi Moradi, Reshad Hosseini,
- Abstract要約: 本研究ではFICAugを紹介した。FICAugは機能間データ拡張フレームワークである。
構造化された合成サンプルを生成することにより、限られたデータ条件下でのモデル一般化を改善するように設計されている。
実験の結果, FICAugは分類精度を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 4.041834517339835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the growing trends in machine learning is the use of data generation techniques, since the performance of machine learning models is dependent on the quantity of the training dataset. However, in many real-world applications, particularly in medical and low-resource domains, collecting large datasets is challenging due to resource constraints, which leads to overfitting and poor generalization. This study introduces FICAug, a novel feature-to-image data augmentation framework designed to improve model generalization under limited data conditions by generating structured synthetic samples. FICAug first operates in the feature space, where original data are clustered using the k-means algorithm. Within pure-label clusters, synthetic data are generated through Gaussian sampling to increase diversity while maintaining label consistency. These synthetic features are then projected back into the image domain using a generative neural network, and a convolutional neural network is trained on the reconstructed images to learn enhanced representations. Experimental results demonstrate that FICAug significantly improves classification accuracy. In feature space, it achieved a cross-validation accuracy of 84.09%, while training a ResNet-18 model on the reconstructed images further boosted performance to 88.63%, illustrating the effectiveness of the proposed framework in extracting new and task-relevant features.
- Abstract(参考訳): 機械学習のトレンドの1つは、機械学習モデルのパフォーマンスがトレーニングデータセットの量に依存するため、データ生成技術の使用である。
しかし、多くの実世界のアプリケーション、特に医療や低リソース領域では、リソース制約のために大規模なデータセットの収集が困難であり、過度に適合し、一般化が不十分になる。
FICAugは、構造化された合成サンプルを生成することにより、限られたデータ条件下でのモデル一般化を改善するために設計された、新しい特徴・画像データ拡張フレームワークである。
FICAugは最初に機能領域で動作し、k-meansアルゴリズムを使って元のデータをクラスタ化する。
純粋なラベルクラスタ内では、ガウスサンプリングを通じて合成データが生成され、ラベルの一貫性を維持しながら多様性を向上させる。
これらの合成特徴は生成ニューラルネットワークを用いて画像領域に投影され、再構成された画像に基づいて畳み込みニューラルネットワークが訓練され、拡張された表現が学習される。
実験の結果, FICAugは分類精度を著しく向上させることがわかった。
特徴空間では、84.09%のクロスバリデーション精度を達成し、再構成画像上でResNet-18モデルをトレーニングすると、パフォーマンスが88.63%向上し、新しいタスク関連特徴の抽出におけるフレームワークの有効性が示された。
関連論文リスト
- Your Image Generator Is Your New Private Dataset [4.09225917049674]
生成拡散モデルは、トレーニングデータを合成的に生成する強力なツールとして登場した。
本稿では,これらの課題に対処するために,テクスチャ・コンディションド・ナレッジ・リサイクリング・パイプラインを提案する。
パイプラインは10の多様な画像分類ベンチマークで厳格に評価されている。
論文 参考訳(メタデータ) (2025-04-06T18:46:08Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
本稿では、これらの問題に対処するために、新しい再視覚的二重ドメイン自己教師型深層展開ネットワークを提案する。
エンド・ツー・エンドの再構築を実現するために,シャンブルとポック・プロキシ・ポイント・アルゴリズム(DUN-CP-PPA)に基づく深層展開ネットワークを設計する。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2025-01-07T12:29:32Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - VICatMix: variational Bayesian clustering and variable selection for discrete biomedical data [0.0]
分類データのクラスタリング用に設計された変分ベイズ有限混合モデルであるVICatMixを提案する。
提案モデルでは, 近似とモデル平均化を用いて, VIにおける局所最適性の低下を緩和し, クラスタ数の真の推定を改良する。
我々は、異なるオミクスデータセットを用いた統合クラスタ分析におけるVICatMixの有用性を実証し、新しいサブタイプの発見を可能にする。
論文 参考訳(メタデータ) (2024-06-23T21:45:04Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
この研究では、分類データセットのギャップを埋めるための機械学習アルゴリズムの使用について検討した。
Error Correction Output Codesフレームワークを使用して構築されたアンサンブルモデルに重点が置かれた。
大量のラベル付きデータの要求を含む、これらの奨励的な結果にもかかわらず、データ計算の欠如に対する深い学習には障害がある。
論文 参考訳(メタデータ) (2023-06-10T03:29:48Z) - Leaving Reality to Imagination: Robust Classification via Generated
Datasets [24.411444438920988]
近年のロバスト性に関する研究では、テストセットと同様のデータセットでトレーニングされたニューラルイメージ分類器間での顕著なパフォーマンスギャップが明らかになった。
生成したデータセットは、画像分類器の自然な堅牢性にどのように影響するのか?
生成したデータで強化された実データに基づいて訓練された画像ネット分類器は、標準トレーニングよりも精度が高く、効果的に頑健であることがわかった。
論文 参考訳(メタデータ) (2023-02-05T22:49:33Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
本稿では,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
本実験により,我々の統合合成増強フレームワークは,病理組織像分類モデルの性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2022-12-20T03:40:44Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Adversarially-regularized mixed effects deep learning (ARMED) models for
improved interpretability, performance, and generalization on clustered data [0.974672460306765]
混合効果モデルは、クラスタ固有のランダム効果からクラスター不変、集団レベルの固定効果を分離する。
本稿では,既存ネットワークへの3つの非侵襲的な付加を通じて,Adversarially-Regularized Mixed Effects Deep Learning (ARMED)モデルを構築するための汎用フレームワークを提案する。
この枠組みを, シミュレーション, 認知症予後診断, 細胞顕微鏡などの4つの応用に適用し, DFNN, 畳み込みニューラルネットワーク, オートエンコーダに適用した。
論文 参考訳(メタデータ) (2022-02-23T20:58:22Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
生成モデルはデータ拡張の効果的なアプローチとして利用できることを示す。
本稿では,認知症自動検出システムから抽出した音声と音声の異なる特徴に対する類似したアプローチの適用について検討する。
論文 参考訳(メタデータ) (2020-04-13T15:05:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。