論文の概要: Towards Reasoning in Large Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2212.10403v2
- Date: Fri, 26 May 2023 17:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 22:48:36.430083
- Title: Towards Reasoning in Large Language Models: A Survey
- Title(参考訳): 大規模言語モデルの推論に向けて:調査
- Authors: Jie Huang and Kevin Chen-Chuan Chang
- Abstract要約: 大規模な言語モデル(LLM)がどの程度推論できるのかは、まだ明らかになっていない。
本稿では,LLMにおける推論に関する知識の現状を概観する。
- 参考スコア(独自算出の注目度): 11.35055307348939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning is a fundamental aspect of human intelligence that plays a crucial
role in activities such as problem solving, decision making, and critical
thinking. In recent years, large language models (LLMs) have made significant
progress in natural language processing, and there is observation that these
models may exhibit reasoning abilities when they are sufficiently large.
However, it is not yet clear to what extent LLMs are capable of reasoning. This
paper provides a comprehensive overview of the current state of knowledge on
reasoning in LLMs, including techniques for improving and eliciting reasoning
in these models, methods and benchmarks for evaluating reasoning abilities,
findings and implications of previous research in this field, and suggestions
on future directions. Our aim is to provide a detailed and up-to-date review of
this topic and stimulate meaningful discussion and future work.
- Abstract(参考訳): 推論は人間の知性の基本的側面であり、問題解決、意思決定、批判的思考といった活動において重要な役割を果たす。
近年,大規模言語モデル (LLM) は自然言語処理において顕著な進歩を遂げており,これらのモデルが十分に大きければ推論能力を示す可能性がある。
しかし、LLMがどの程度推論できるのかは、まだ明らかになっていない。
本稿では, LLMにおける推論に関する知識の現状を概観するとともに, これらのモデルにおける推論を改善する技術, 推論能力を評価する方法とベンチマーク, この分野におけるこれまでの研究成果と含意, 今後の方向性を提案する。
我々の目標は、このトピックの詳細と最新のレビューを提供し、有意義な議論と今後の作業を促進することです。
関連論文リスト
- Can Large Language Models Act as Symbolic Reasoners? [0.0]
大規模言語モデル(LLM)は印象的だが、彼らのプロセスと結論を推論できないと批判されている。
本稿では,記号的推論とLLMに関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-10-28T20:01:50Z) - Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
因果推論は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
大規模言語モデル(LLM)は出力に対して有理性を生成することができるが、因果推論を確実に行う能力は未だ不明である。
論文 参考訳(メタデータ) (2024-10-22T04:18:19Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models -- A Survey [25.732397636695882]
大規模言語モデル(LLM)は、最近、推論を含むタスクで顕著なパフォーマンスを示している。
これらの成功にもかかわらず、LLMの推論能力の深さは未だ不明である。
論文 参考訳(メタデータ) (2024-04-02T11:46:31Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
大規模言語モデル(LLM)では,人間の観察と類似した推論パターンが示される。
我々の研究は、モデルの構造と規模が、その好む推論方法に大きく影響していることを示します。
論文 参考訳(メタデータ) (2024-02-20T12:58:14Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
推論は、交渉、医療診断、刑事捜査など、様々な現実世界の環境において重要な役割を担っている。
本稿では,推論に適応する基礎モデルを提案する。
次に、基礎モデルにおける推論能力の出現の背後にある潜在的な将来方向を掘り下げる。
論文 参考訳(メタデータ) (2023-12-17T15:16:13Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
大規模言語モデルは、さまざまな自然言語処理タスクにおいて、非常に大きなパフォーマンスを示しています。
LLMが人間のような認知能力を達成できるのか、あるいはこれらのモデルがいまだに根本から取り囲まれているのかは不明だ。
我々は,抽象的推論タスクの記憶以上の言語モデルを評価するための新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-31T04:50:29Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。