論文の概要: Walking Noise: On Layer-Specific Robustness of Neural Architectures against Noisy Computations and Associated Characteristic Learning Dynamics
- arxiv url: http://arxiv.org/abs/2212.10430v2
- Date: Fri, 14 Jun 2024 13:04:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 20:12:53.006916
- Title: Walking Noise: On Layer-Specific Robustness of Neural Architectures against Noisy Computations and Associated Characteristic Learning Dynamics
- Title(参考訳): ウォーキングノイズ:ニューラルアーキテクチャのノイズ計算と関連する特性学習ダイナミクスに対する層特異的ロバスト性について
- Authors: Hendrik Borras, Bernhard Klein, Holger Fröning,
- Abstract要約: 本稿では,異なる分類タスクとモデルアーキテクチャに対する加法的,乗法的,混合ノイズの影響について論じる。
本研究では,ロバスト性を測定するため,層固有のノイズを注入するウォーキングノイズ法を提案する。
我々は,この方法論の実践的利用に関する議論をまとめ,ノイズの多い環境での適応型マルチエグゼクティブの活用について論じる。
- 参考スコア(独自算出の注目度): 1.5184189132709105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are extremely successful in various applications, however they exhibit high computational demands and energy consumption. This is exacerbated by stuttering technology scaling, prompting the need for novel approaches to handle increasingly complex neural architectures. At the same time, alternative computing technologies such as analog computing, which promise groundbreaking improvements in energy efficiency, are inevitably fraught with noise and inaccurate calculations. Such noisy computations are more energy efficient, and, given a fixed power budget, also more time efficient. However, like any kind of unsafe optimization, they require countermeasures to ensure functionally correct results. This work considers noisy computations in an abstract form, and gears to understand the implications of such noise on the accuracy of neural network classifiers as an exemplary workload. We propose a methodology called Walking Noise which injects layer-specific noise to measure the robustness and to provide insights on the learning dynamics. In more detail, we investigate the implications of additive, multiplicative and mixed noise for different classification tasks and model architectures. While noisy training significantly increases robustness for all noise types, we observe in particular that it results in increased weight magnitudes and thus inherently improves the signal-to-noise ratio for additive noise injection. Contrarily, training with multiplicative noise can lead to a form of self-binarization of the model parameters, leading to extreme robustness. We conclude with a discussion of the use of this methodology in practice, among others, discussing its use for tailored multi-execution in noisy environments.
- Abstract(参考訳): ディープニューラルネットワークは様々な用途で非常に成功しているが、高い計算要求とエネルギー消費を示す。
これは、テクノロジのスケーリングの混乱によって悪化し、ますます複雑なニューラルアーキテクチャを扱うための新しいアプローチの必要性が高まっている。
同時に、エネルギー効率の根本的な改善を約束するアナログコンピューティングのような代替コンピューティング技術は、必然的にノイズと不正確な計算を伴っている。
このようなノイズの多い計算はエネルギー効率が良く、固定電力予算が与えられた場合、より時間効率が良い。
しかしながら、あらゆる種類の安全でない最適化と同様に、機能的に正しい結果を保証するために対策が必要である。
本研究は,ニューラルネットワーク分類器の精度に対するノイズの影響を,模範的な作業負荷として理解するために,抽象形式でのノイズ計算を考察する。
本研究では,ロバスト性を測定するために層固有のノイズを注入し,学習力学の洞察を与えるウォーキングノイズという手法を提案する。
より詳しくは、異なる分類タスクとモデルアーキテクチャに対する加法的、乗法的、混合ノイズの影響について考察する。
雑音のトレーニングは,全てのノイズタイプに対して頑健さを著しく向上させるが,特に重み付けが増加し,付加雑音注入における信号対雑音比が本質的に向上することが観察された。
対照的に、乗法ノイズによるトレーニングは、モデルパラメータの自己双対化の形式につながり、極端に堅牢性をもたらす。
我々は,この方法論の実践的利用に関する議論をまとめ,ノイズの多い環境での適応型マルチエグゼクティブの活用について論じる。
関連論文リスト
- Efficient Noise Mitigation for Enhancing Inference Accuracy in DNNs on Mixed-Signal Accelerators [4.416800723562206]
我々は、アナログニューラルネットワークの精度に基づいて、プロセス誘起および老化に関連するアナログコンピューティングコンポーネントのバリエーションをモデル化する。
事前学習モデルの選択した層間に挿入された遮音ブロックを導入する。
雑音レベルに対するモデルのロバスト性を大幅に向上させることを実証した。
論文 参考訳(メタデータ) (2024-09-27T08:45:55Z) - Pivotal Auto-Encoder via Self-Normalizing ReLU [20.76999663290342]
トランスフォーメーション学習問題として,単一の隠蔽層スパースオートエンコーダを定式化する。
本稿では,テスト時の騒音レベルに不変な予測モデルを実現する最適化問題を提案する。
実験結果から, 各種ノイズに対する安定性が向上することが示唆された。
論文 参考訳(メタデータ) (2024-06-23T09:06:52Z) - Learning Provably Robust Estimators for Inverse Problems via Jittering [51.467236126126366]
簡単な正規化手法であるジッタリングが,逆問題に対する最悪ケース頑健な推定器の学習に有効かどうかを検討する。
ジッタリングは最悪の場合のロバスト性を大幅に向上させるが,デノイング以上の逆問題に最適であることを示す。
論文 参考訳(メタデータ) (2023-07-24T14:19:36Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
本稿では,NARL-Adjuster(NARL-Adjuster for brevity)と呼ばれる,ハイパーパラメータ予測関数を適応的に学習するメタラーニング手法を提案する。
4つのSOTAロバストな損失関数を我々のアルゴリズムに統合し,提案手法の一般性および性能をノイズ耐性と性能の両面で検証した。
論文 参考訳(メタデータ) (2023-01-18T04:54:58Z) - Robustness of quantum reinforcement learning under hardware errors [0.0]
変分量子機械学習アルゴリズムは、機械学習タスクに短期量子デバイスをどのように利用するかに関する最近の研究の焦点となっている。
これらは、動作している回路をデバイスに合わせることができ、計算の大部分を古典に委譲できるため、これに適していると考えられている。
しかし、ハードウェアによるノイズの影響下での量子機械学習モデルのトレーニングの効果は、まだ広く研究されていない。
論文 参考訳(メタデータ) (2022-12-19T13:14:22Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
本稿では,ロバストなエンドツーエンドのセマンティック通信システムにおいて,セマンティックノイズに対処するためのフレームワークを提案する。
セマンティックノイズに対処するため、重み付き対向トレーニングを開発し、トレーニングデータセットにセマンティックノイズを組み込む。
ノイズやタスク非関連の特徴を抑える機能重要モジュール (FIM) を開発した。
論文 参考訳(メタデータ) (2022-06-08T16:58:47Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
量子コンピューティングテストベッドは、量子ビットの小さな集合に対して高忠実な量子制御を示す。
これらのノイズの多い中間スケールデバイスは、デコヒーレンスの前に十分な数のシーケンシャルな操作をサポートすることができる。
これらのアルゴリズムの結果は不完全であるが、これらの不完全性は量子コンピュータのテストベッド開発をブートストラップするのに役立ちます。
論文 参考訳(メタデータ) (2022-05-27T20:35:24Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
ノイズの多いマルチチャネル入力からクリーンなニューロン活動信号を生成することを学習する完全畳み込みデノイングオートエンコーダを提案する。
シミュレーションデータを用いた実験結果から,提案手法はノイズ崩壊型ニューラルネットワークの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-09-18T14:51:24Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
本論文では,未知のノイズ統計による信号を堅牢に検出する一般化最大確率(ML)推定器を考案する。
実際には、システムノイズに関する統計的な知識はほとんどなく、場合によっては非ガウス的であり、衝動的であり、分析不可能である。
我々のフレームワークは、ノイズサンプルのみを必要とする教師なしの学習アプローチによって駆動される。
論文 参考訳(メタデータ) (2021-01-21T04:48:15Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。