Mitigating Coupling Map Constrained Correlated Measurement Errors on
Quantum Devices
- URL: http://arxiv.org/abs/2212.10642v1
- Date: Tue, 20 Dec 2022 20:38:58 GMT
- Title: Mitigating Coupling Map Constrained Correlated Measurement Errors on
Quantum Devices
- Authors: Alan Robertson, Shuaiwen Leon Song
- Abstract summary: We introduce a technique for the suppression of state-dependent and correlated measurement errors, which are commonly observed on modern superconducting quantum devices.
Our method leverages previous results, establishing that correlated errors tend to be physically localised on quantum devices to perform characterisations over the coupling map of the device.
We quantitatively demonstrate the advantages of our proposed error mitigation system design across a range of current IBM quantum devices.
- Score: 2.480193314173464
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a technique for the suppression of state-dependent and
correlated measurement errors, which are commonly observed on modern
superconducting quantum devices. Our method leverages previous results,
establishing that correlated errors tend to be physically localised on quantum
devices to perform characterisations over the coupling map of the device, and
to join overlapping measurement calibrations as a series of sparse matrices. We
term this `Coupling Map Calibration'. We quantitatively demonstrate the
advantages of our proposed error mitigation system design across a range of
current IBM quantum devices. Our experimental results on common benchmark
circuits demonstrate up to a $41\%$ reduction in the error rate without
increasing the number of executions of the quantum device required when
compared to conventional error mitigation methods.
Related papers
- Efficient separate quantification of state preparation errors and
measurement errors on quantum computers and their mitigation [0.5439020425819]
Current noisy quantum computers have multiple types of errors, which can occur in the state preparation, measurement/readout, and gate operation.
We propose a simple and resource-efficient approach to quantify separately the state preparation and readout error rates.
arXiv Detail & Related papers (2023-10-29T02:51:06Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
benchmarking hardware errors in quantum computers has drawn significant attention lately.
Existing benchmarks for digital quantum computers involve averaging the global fidelity over a large set of quantum circuits.
We develop a new figure-of-merit suitable for multi-qubit quantum gates based on the reduced Choi matrix.
arXiv Detail & Related papers (2022-10-09T19:36:21Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Error metric for non-trace-preserving quantum operations [3.6492255655113395]
We study the problem of measuring errors in non-trace-preserving quantum operations.
We propose an error metric that efficiently provides an upper bound on the trace distance between the normalized output states.
arXiv Detail & Related papers (2021-10-05T18:54:14Z) - Noise-Resistant Quantum State Compression Readout [1.4124476944967472]
We present a quantum state readout method, named textitcompression readout, that naturally avoids large multi-qubit measurement errors.
Our method generally outperforms direct measurements in terms of accuracy, and the advantage grows with the system size.
Our method can immediately boost the readout performance of near-term quantum devices and will greatly benefit the development of large-scale quantum computing.
arXiv Detail & Related papers (2021-09-14T16:36:04Z) - Conditionally rigorous mitigation of multiqubit measurement errors [0.0]
measurement errors are significantly larger than gate errors on some platforms.
We develop a measurement error mitigation technique, conditionally rigorous TMEM, that is not sensitive to state-preparation errors.
arXiv Detail & Related papers (2021-09-09T17:49:13Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.